

email: sydney@envirolab.com.au **envirolab.com.au**

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYS	IS	16	7400
Client:	_		
Douglas Partners Pty Ltd			
96 Hermitage Rd			
West Ryde			
NSW 2114			
Attention: John Russell, Chris Bagia			
Sample log in details:			
Your Reference:	71459.09, Prop	Res	idential Development, Moorebank
No. of samples:	7 Waters		
Date samples received / completed instructions received	18/05/17	/	18/05/17
Analysis Details:			
Please refer to the following pages for results, methodology	summary and qu	ality	control data.
Samples were analysed as received from the client. Results	relate specifically	y to t	he samples as received.
Results are reported on a dry weight basis for solids and on	an as received ba	asis f	for other matrices.
Please refer to the last page of this report for any comm	ents relating to a	the r	esults.
Report Details:			
Date results requested by: / Issue Date:	25/05/17	/	25/05/17
Date of Preliminary Report:	Not Issued		
NATA accreditation number 2901. This document shall not b	e reproduced exc	cept	in full.
Accredited for compliance with ISO/IEC 17025 - Testing	Tests not	cov	ered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4	167400-6
Your Reference		SW1	SW2	SW3	SW4	Trip Spike
	-					
Date Sampled		17/05/2017	17/05/2017	17/05/2017	17/05/2017	17/05/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017
Date analysed	-	19/05/2017	19/05/2017	19/05/2017	19/05/2017	19/05/2017
TRHC6 - C9	µg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10	µg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	<10	[NA]
Benzene	µg/L	<1	<1	<1	<1	99%
Toluene	µg/L	<1	<1	<1	<1	104%
Ethylbenzene	µg/L	<1	<1	<1	<1	104%
m+p-xylene	µg/L	<2	<2	<2	<2	114%
o-xylene	µg/L	<1	<1	<1	<1	117%
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	104	107	104	104	102
Surrogate toluene-d8	%	102	108	118	120	106
Surrogate 4-BFB	%	101	111	104	98	118

vTRH(C6-C10)/BTEXN in Water		
Our Reference:	UNITS	167400-7
Your Reference		Trip Blank
	-	
Date Sampled		17/05/2017
Type of sample		Water
Date extracted	-	18/05/2017
Date analysed	-	19/05/2017
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	104
Surrogate toluene-d8	%	103
Surrogate 4-BFB	%	99

svTRH (C10-C40) in Water					
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4
Your Reference		SW1	SW2	SW3	SW4
	-				
Date Sampled		17/05/2017	17/05/2017	17/05/2017	17/05/2017
Type of sample		Water	Water	Water	Water
Date extracted	-	23/05/2017	23/05/2017	23/05/2017	23/05/2017
Date analysed	-	23/05/2017	23/05/2017	23/05/2017	23/05/2017
TRHC 10 - C14	µg/L	<50	<50	<50	<50
TRHC 15 - C28	µg/L	<100	<100	<100	<100
TRHC29 - C36	µg/L	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100	<100
TRH>C34 - C40	µg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	74	63	72	83

PAHs in Water					
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4
Your Reference		SW1	SW2	SW3	SW4
Data Campled	-	47/05/2047	47/05/2047	47/05/2047	47/05/0047
Date Sampled		17/05/2017 Weter	17/05/2017 Weter	17/05/2017 Weter	17/05/2017 Water
		water	water	water	Waler
Date extracted	-	23/05/2017	23/05/2017	23/05/2017	23/05/2017
Date analysed	-	24/05/2017	24/05/2017	24/05/2017	24/05/2017
Naphthalene	µg/L	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	103	89	87	117

OCP in water - Trace level					
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4
Your Reference		SW1	SW2	SW3	SW4
Data Sampled	-	17/05/2017	17/05/2017	17/05/2017	17/05/2017
		17/05/2017 Water	17/05/2017 Motor	17/05/2017 Motor	17/05/2017 Water
		vvalei	water	water	Waler
Date extracted	-	23/05/2017	23/05/2017	23/05/2017	23/05/2017
Date analysed	-	25/05/2017	25/05/2017	25/05/2017	25/05/2017
HCB	µg/L	<0.001	<0.001	<0.001	<0.001
alpha-BHC	μg/L	<0.001	<0.001	<0.001	<0.001
gamma-BHC	μg/L	<0.001	<0.001	<0.001	<0.001
beta-BHC	μg/L	<0.001	<0.001	<0.001	<0.001
Heptachlor	μg/L	<0.001	<0.001	<0.001	<0.001
delta-BHC	μg/L	<0.001	<0.001	<0.001	<0.001
Aldrin	μg/L	<0.001	<0.001	<0.001	<0.001
Heptachlor Epoxide	μg/L	<0.001	<0.001	<0.001	<0.001
gamma-Chlordane	µg/L	<0.001	<0.004	<0.001	<0.004
alpha-Chlordane	µg/L	<0.001	<0.001	<0.001	<0.001
Endosulfan I	µg/L	<0.002	<0.002	<0.002	<0.002
pp-DDE	µg/L	<0.001	<0.001	<0.001	<0.001
Dieldrin	µg/L	0.001	0.003	0.003	0.002
Endrin	µg/L	<0.001	<0.001	<0.001	<0.001
pp-DDD	µg/L	<0.001	<0.001	<0.001	<0.001
Endosulfan II	µg/L	<0.002	<0.002	<0.002	<0.002
DDT	μg/L	<0.001	<0.001	<0.001	<0.001
Endosulfan Sulphate	μg/L	<0.001	<0.001	<0.001	<0.001
Methoxychlor	μg/L	<0.001	<0.001	<0.001	<0.001
Mirex	µg/L	<0.002	<0.002	<0.002	<0.002
Surrogate p-Terphenyl-d14	%	95	97	92	97

OP in water Trace					
		407400 4	407400.0	407400.0	107400 4
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4
Your Reference		SW1	SW2	SW3	SVV4
Data Compled	-	47/05/0047	47/05/0047	47/05/0047	47/05/0047
Date Sampled		17/05/2017	17/05/2017	17/05/2017	17/05/2017
l ype of sample		Water	Water	Water	Water
Date extracted	-	23/05/2017	23/05/2017	23/05/2017	23/05/2017
Date analysed	-	25/05/2017	25/05/2017	25/05/2017	25/05/2017
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02	<0.02	<0.02
Bromophos ethyl	µg/L	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos	µg/L	<0.009	<0.009	<0.009	<0.009
Chlorpyriphos-methyl	µg/L	<0.01	<0.01	<0.01	<0.01
Diazinon	µg/L	<0.01	<0.01	<0.01	<0.01
Dichlorovos	µg/L	<0.01	<0.01	<0.01	<0.01
Dimethoate	µg/L	<0.01	<0.01	<0.01	<0.01
Ethion	µg/L	<0.01	<0.01	<0.01	<0.01
Fenitrothion	µg/L	<0.01	<0.01	<0.01	<0.01
Malathion	µg/L	<0.01	<0.01	<0.01	<0.01
Parathion	µg/L	<0.004	<0.004	<0.004	<0.004
Methyl Parathion	µg/L	<0.01	<0.01	<0.01	<0.01
Ronnel	µg/L	<0.20	<0.20	<0.20	<0.20
Surrogate p-Terphenyl-d14	%	95	97	92	97

PCB in water - trace level Aroclors					
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4
Your Reference		SW1	SW2	SW3	SW4
Data Complet	-	47/05/0047	47/05/0047	17/05/0017	47/05/2047
Date Sampled		17/05/2017	17/05/2017	17/05/2017	17/05/2017
I ype of sample		Water	Water	Water	Water
Date prepared	-	23/05/2017	23/05/2017	23/05/2017	23/05/2017
Date analysed	-	25/05/2017	25/05/2017	25/05/2017	25/05/2017
Aroclor 1016	µg/L	#	<0.01	<0.01	<0.01
Aroclor 1221	µg/L	#	<0.01	<0.01	<0.01
Aroclor 1232	µg/L	#	<0.01	<0.01	<0.01
Aroclor 1242	µg/L	#	<0.01	<0.01	<0.01
Aroclor 1248	µg/L	#	<0.01	<0.01	<0.01
Aroclor 1254	µg/L	#	<0.01	<0.01	<0.01
Aroclor 1260	µg/L	#	<0.01	<0.01	<0.01
Total PCB	µg/L	0.010	<0.010	<0.010	<0.010
Surrogate p-Terphenyl-d14	%	95	97	92	97

Total Phenolics in Water					
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4
Your Reference		SW1	SW2	SW3	SW4
	-				
Date Sampled		17/05/2017	17/05/2017	17/05/2017	17/05/2017
Type of sample		Water	Water	Water	Water
Date extracted	-	19/05/2017	19/05/2017	19/05/2017	19/05/2017
Date analysed	-	19/05/2017	19/05/2017	19/05/2017	19/05/2017
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4	167400-5
Your Reference		SW1	SW2	SW3	SW4	BD1
Date Sampled Type of sample		17/05/2017 Water	17/05/2017 Water	17/05/2017 Water	17/05/2017 Water	17/05/2017 Water
Date prepared	-	22/05/2017	22/05/2017	22/05/2017	22/05/2017	22/05/2017
Date analysed	-	22/05/2017	22/05/2017	22/05/2017	22/05/2017	22/05/2017
Arsenic-Dissolved	µg/L	<1	2	2	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	3	4	2	4	2
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Manganese-Dissolved	µg/L	49	150	140	39	49
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	2	2	2	2	2
Zinc-Dissolved	µg/L	6	4	2	7	5

Metals in Waters - Total Our Reference: Your Reference	UNITS 	167400-1 SW1	167400-2 SW2	167400-3 SW3	167400-4 SW4	167400-5 BD1
Date Sampled		17/05/2017	17/05/2017	17/05/2017	17/05/2017	17/05/2017
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/05/2017	23/05/2017	23/05/2017	23/05/2017	23/05/2017
Date analysed		23/05/2017	23/05/2017	23/05/2017	23/05/2017	23/05/2017
Phosphorus - Total	mg/L	0.07	<0.05	<0.05	0.08	0.08

Miscellaneous Inorganics Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4	167400-5
Your Reference		SW1	SW2	SW3	SW4	BD1
Date Sampled		17/05/2017	17/05/2017	17/05/2017	17/05/2017	17/05/2017
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017
Date analysed	-	18/05/2017	18/05/2017	18/05/2017	18/05/2017	18/05/2017
Nitrate as N in water	mg/L	0.29	0.02	0.02	0.27	0.28
Nitrite as N in water	mg/L	<0.005	0.01	0.01	<0.005	<0.005
Ammonia as N in water	mg/L	0.005	0.11	0.096	0.012	<0.005

Perfluoroalkylated Substances in					
Waters					
Our Reference:	UNITS	167400-1	167400-2	167400-3	167400-4
Your Reference		SW1	SW2	SW3	SW4
Date Sampled	-	17/05/2017	17/05/2017	17/05/2017	17/05/2017
Type of sample		Water	Water	Water	Water
		24/05/2017	24/05/2017	24/05/2017	24/05/2017
Date prepared	-	24/05/2017	24/05/2017	24/05/2017	24/05/2017
	-	24/05/2017	24/05/2017	24/05/2017	24/05/2017
	µg/∟	<0.01	<0.01	<0.01	<0.01
Perfluoropentanesultonic acid	µg/∟	<0.01	<0.01	<0.01	<0.01
Perfluoronexanesulfonic acid	µg/∟	0.01	0.03	0.03	0.01
Perfluoroheptanesulfonic acid*	µg/L	<0.01	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	µg/L	0.01	0.04	0.04	0.01
Perfluorodecanesulfonic acid	µg/L	<0.02	<0.02	<0.02	<0.02
Perfluorobutanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid*	µg/L	<0.02	0.03	0.04	<0.02
Perfluorohexanoic acid	µg/L	<0.01	0.03	0.03	<0.01
Perfluoroheptanoic acid	µg/L	<0.01	0.02	0.02	<0.01
Perfluorooctanoic acid PFOA	µg/L	<0.01	0.03	0.03	<0.01
Perfluorononanoic acid	µg/L	<0.01	<0.01	<0.01	<0.01
Perfluorodecanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02
Perfluorododecanoic acid	µg/L	<0.05	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	µg/L	<0.1	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	µg/L	<0.5	<0.5	<0.5	<0.5
4:2FTS	µg/L	<0.01	<0.01	<0.01	<0.01
6:2FTS	µg/L	<0.01	<0.01	<0.01	<0.01
8:2FTS	µg/L	<0.01	<0.01	<0.01	<0.01
10:2 FTS*	µg/L	<0.01	<0.01	<0.01	<0.01
Perfluorooctanesulfonamide	µg/L	<0.1	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	µg/L	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon - amide	µg/L	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid -oethanol	µg/L	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid -oethanol	µg/L	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf-amid oacetic acid	µg/L	<0.02	<0.02	<0.02	<0.02
EtPerfluorooctanesulf-amid oacetic acid	µg/L	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C8 PFOS	%	93	98	95	97
Surrogate ¹³ C ₂ PFOA	%	104	101	105	104

Client Reference: 71459.09, Prop Residential Development, Moorebank

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Ext-054	Analysed by MPL Envirolab
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-022	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-020	Determination of various metals by ICP-AES.
Inorg-055	Nitrate - determined colourimetrically. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.
Org-035	Soil samples are extracted with Methanol, evaporated and reconsistuted. Waters are directly injected and/or concentrated after SPE. Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are NOT corrected for Surrogates (mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample).
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#		-	Recovery
vTRH(C6-C10)/BTEXNin						Base II Duplicate II % RPD		
Date extracted	-			18/05/2 017	[NT]	[NT]	LCS-W3	18/05/2017
Date analysed	-			19/05/2 017	[NT]	[NT]	LCS-W3	19/05/2017
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W3	100%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W3	100%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	94%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	103%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	100%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W3	101%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W3	99%
Naphthalene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	103	[NT]	[NT]	LCS-W3	101%
Surrogate toluene-d8	%		Org-016	117	[NT]	[NT]	LCS-W3	105%
Surrogate 4-BFB	%		Org-016	84	[NT]	[NT]	LCS-W3	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
svTRH (C10-C40) in Water						Base II Duplicate II % RPD		
Date extracted	-			23/05/2 017	[NT]	[NT]	LCS-W1	23/05/2017
Date analysed	-			23/05/2 017	[NT]	[NT]	LCS-W1	23/05/2017
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	[NR]	[NR]
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	106%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	104%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	[NR]	[NR]
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	106%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	104%
Surrogate o-Terphenyl	%		Org-003	85	[NT]	[NT]	LCS-W1	91%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Date extracted	-			23/05/2 017	[NT]	[NT]	LCS-W2	23/05/2017
Date analysed	-			24/05/2 017	[NT]	[NT]	LCS-W2	24/05/2017
Naphthalene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	70%
Acenaphthylene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	81%
Phenanthrene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	85%
Anthracene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	89%
Pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	87%
Benzo(a)anthracene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Chrysene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W2	83%
Benzo(b,j +k)fluoranthene	µg/L	2	Org-012	~2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
S <i>urrogate p</i> -Terphenyl- d14	%		Org-012	113	[NT]	[NT]	LCS-W2	125%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		
OCP in water - Trace level						Base II Duplicate II %RPD		
Date extracted	-			23/05/2 017	167400-1	23/05/2017 23/05/2017		
Date analysed	-			25/05/2 017	167400-1	25/05/2017 25/05/2017		
HCB	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
alpha-BHC	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
gamma-BHC	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
beta-BHC	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Heptachlor	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
delta-BHC	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Aldrin	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Heptachlor Epoxide	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
gamma-Chlordane	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
alpha-Chlordane	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Endosulfan I	µg/L	0.002	Org-005	<0.002	167400-1	<0.002 <0.002		
pp-DDE	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Dieldrin	µg/L	0.001	Org-005	<0.001	167400-1	0.001 0.001 RPD: 0		
Endrin	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
pp-DDD	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Endosulfan II	µg/L	0.002	Org-005	<0.002	167400-1	<0.002 <0.002		
DDT	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Endosulfan Sulphate	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Methoxychlor	µg/L	0.001	Org-005	<0.001	167400-1	<0.001 <0.001		
Mirex	µg/L	0.002	Org-012	<0.002	167400-1	<0.002 <0.002		
S <i>urrogate p</i> -Terphenyl- d14	%		Org-012	113	167400-1	95 103 RPD:8		

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results
OP in water Trace					Sum	Base II Duplicate II %RPD
ANZECCF/ADWG						
Date extracted	-			23/05/2 017	167400-1	23/05/2017 23/05/2017
Date analysed	-			25/05/2 017	167400-1	25/05/2017 25/05/2017
Azinphos-methyl (Guthion)	µg/L	0.01	Ext-054	<0.01	167400-1	<0.02 <0.01
Bromophos ethyl	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Chlorpyriphos	µg/L	0.009	Ext-054	<0.009	167400-1	<0.009 <0.009
Chlorpyriphos-methyl	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Diazinon	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Dichlorovos	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Dimethoate	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Ethion	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Fenitrothion	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Malathion	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Parathion	µg/L	0.004	Ext-054	<0.004	167400-1	<0.004 <0.004
Methyl Parathion	µg/L	0.01	Ext-054	<0.01	167400-1	<0.01 <0.01
Ronnel	µg/L	0.2	Ext-054	<0.20	167400-1	<0.20 <0.20
Surrogate p-Terphenyl-	%		Ext-054	113	167400-1	95 103 RPD:8
	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results
					Sm#	
PCB in water - trace level Aroclors						Base II Duplicate II %RPD
Date prepared	-			23/05/2 017	167400-1	23/05/2017 23/05/2017
Date analysed	-			25/05/2 017	167400-1	25/05/2017 25/05/2017
Aroclor 1016	µg/L	0.01	Org- 012/017	<0.01	167400-1	# #
Aroclor 1221	µg/L	0.01	Org- 012/017	<0.01	167400-1	# #
Aroclor 1232	µg/L	0.01	Org- 012/017	<0.01	167400-1	# #
Aroclor 1242	µg/L	0.01	Org- 012/017	<0.01	167400-1	# #
Aroclor 1248	µg/L	0.01	Org- 012/017	<0.01	167400-1	# #
Aroclor 1254	µg/L	0.01	Org- 012/017	<0.01	167400-1	# #
Aroclor 1260	µg/L	0.01	Org- 012/017	<0.01	167400-1	# #
Total PCB						
	µg/L	0.01	Ext-020	<0.010	167400-1	0.010 0.020 RPD:67

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Total Phenolics in Water						Base II Duplicate II % RPD		
Date extracted	-			19/05/2 017	167400-1	19/05/2017 19/05/2017	LCS-W3	19/05/2017
Date analysed	-			19/05/2 017	167400-1	19/05/2017 19/05/2017	LCS-W3	19/05/2017
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	167400-1	<0.05 <0.05	LCS-W3	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
HM in water - dissolved					Sm#	Base II Duplicate II % RPD		Recovery
Date prepared	-			22/05/2 017	167400-1	22/05/2017 22/05/2017	LCS-W2	22/05/2017
Date analysed	-			22/05/2 017	167400-1	22/05/2017 22/05/2017	LCS-W2	22/05/2017
Arsenic-Dissolved	µg/L	1	Metals-022	<1	167400-1	<1 [N/T]	LCS-W2	98%
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	167400-1	<0.1 [N/T]	LCS-W2	101%
Chromium-Dissolved	µg/L	1	Metals-022	<1	167400-1	<1 [N/T]	LCS-W2	94%
Copper-Dissolved	µg/L	1	Metals-022	<1	167400-1	3 [N/T]	LCS-W2	91%
Lead-Dissolved	µg/L	1	Metals-022	<1	167400-1	<1 [N/T]	LCS-W2	97%
Manganese-Dissolved	µg/L	5	Metals-022	<5	167400-1	49 [N/T]	LCS-W2	93%
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	167400-1	<0.05 <0.05	[NR]	[NR]
Nickel-Dissolved	µg/L	1	Metals-022	<1	167400-1	2 [N/T]	LCS-W2	95%
Zinc-Dissolved	µg/L	1	Metals-022	<1	167400-1	6 [N/T]	LCS-W2	94%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in Waters - Total						Base II Duplicate II % RPD		
Date prepared	-			23/05/2 017	[NT]	[NT]	LCS-W1	23/05/2017
Date analysed	-			23/05/2 017	[NT]	[NT]	LCS-W1	23/05/2017
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]	LCS-W1	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II % RPD		-
Date prepared	-			18/05/2 017	[NT]	[NT]	LCS-W3	18/05/2017
Date analysed	-			18/05/2 017	[NT]	[NT]	LCS-W3	18/05/2017
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]	[NT]	LCS-W3	96%
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]	[NT]	LCS-W3	106%
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]	[NT]	LCS-W3	108%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Porfluoroalladatad					Sm#	Paga II Duplicata II % PPD		Recovery
Substances in Waters						Base II Duplicate II %RPD		
Date prepared	-			24/05/2	167400-1	24/05/2017 24/05/2017	LCS-W3	24/05/2017
				017				
Date analysed	-			24/05/2 017	167400-1	24/05/2017 24/05/2017	LCS-W3	24/05/2017
Perfluorobutanesulfonic acid	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	96%
Perfluoropentanesulfonic acid*	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	94%
Perfluorohexanesulfonic acid	µg/L	0.01	Org-035	<0.01	167400-1	0.01 0.02 RPD: 67	LCS-W3	101%
Perfluoroheptanesulfonic acid*	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	85%
Perfluorooctanesulfonic acid PFOS	µg/L	0.01	Org-035	<0.01	167400-1	0.01 0.01 RPD: 0	LCS-W3	102%
Perfluorodecanesulfonic acid	µg/L	0.02	Org-035	<0.02	167400-1	<0.02 <0.02	LCS-W3	97%
Perfluorobutanoic acid	µg/L	0.02	Org-035	<0.02	167400-1	<0.02 <0.02	LCS-W3	97%
Perfluoropentanoic acid*	µg/L	0.02	Org-035	<0.02	167400-1	<0.02 <0.02	LCS-W3	100%
Perfluorohexanoic acid	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	101%
Perfluoroheptanoic acid	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	109%
Perfluorooctanoic acid PFOA	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	100%
Perfluorononanoic acid	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	100%
Perfluorodecanoic acid	µg/L	0.02	Org-035	<0.02	167400-1	<0.02 <0.02	LCS-W3	100%
Perfluoroundecanoic acid	µg/L	0.02	Org-035	<0.02	167400-1	<0.02 <0.02	LCS-W3	101%
Perfluorododecanoic acid	µg/L	0.05	Org-035	<0.05	167400-1	<0.05 <0.05	LCS-W3	95%
Perfluorotridecanoic acid	µg/L	0.1	Org-035	<0.1	167400-1	<0.1 <0.1	LCS-W3	111%
Perfluorotetradecanoic acid	µg/L	0.5	Org-035	<0.5	167400-1	<0.5 <0.5	LCS-W3	126%
4:2FTS	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	107%
6:2FTS	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	110%
8:2FTS	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	122%
10:2FTS*	µg/L	0.01	Org-035	<0.01	167400-1	<0.01 <0.01	LCS-W3	105%
Perfluorooctane sulfonamide	µg/L	0.1	Org-035	<0.1	167400-1	<0.1 <0.1	LCS-W3	106%
N-Methyl perfluorooctane sulfonamide	µg/L	0.05	Org-035	<0.05	167400-1	<0.05 <0.05	LCS-W3	95%
N-Ethyl perfluorooctanesulfon - amide	µg/L	0.1	Org-035	<0.1	167400-1	<0.1 <0.1	LCS-W3	81%
N-Me perfluorooctanesulfonam id -oethanol	µg/L	0.05	Org-035	<0.05	167400-1	<0.05 <0.05	LCS-W3	95%
N-Et perfluorooctanesulfonam id -oethanol	µg/L	0.5	Org-035	<0.5	167400-1	<0.5 <0.5	LCS-W3	116%
MePerfluorooctanesulf- amid oacetic acid	µg/L	0.02	Org-035	<0.02	167400-1	<0.02 <0.02	LCS-W3	99%

Client	Reference:
•	

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Perfluoroalkylated Substances in Waters					511#	Base II Duplicate II %RPD		Recovery
EtPerfluorooctanesulf- amid oacetic acid	µg/L	0.02	Org-035	<0.02	167400-1	<0.02 <0.02	LCS-W3	93%
Surrogate ¹³ C ₈ PFOS	%		Org-035	102	167400-1	93 100 RPD: 7	LCS-W3	98%
Surrogate ¹³ C ₂ PFOA	%		Org-035	104	167400-1	104 103 RPD:1	LCS-W3	103%
QUALITYCONTROL	UNITS	S [Dup. Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
svTRH (C10-C40) in Wate	r		-	Base+I	Duplicate+%RP	D	-	
Date extracted	-		[NT]		[NT]	167400-3	23/05/201	7
Date analysed	-		[NT]		[NT]	167400-3	23/05/201	7
TRHC 10 - C 14	µg/L		[NT]		[NT]	167400-3	106%	
TRHC 15 - C28	µg/L		[NT]		[NT]	167400-3	92%	
TRHC29 - C36	µg/L		[NT]		[NT]	167400-3	83%	
TRH>C10 - C16	µg/L		[NT]		[NT]	167400-3	106%	
TRH>C16 - C34	µg/L		[NT]		[NT]	167400-3	82%	
TRH>C34 - C40	µg/L		[NT]		[NT]	167400-3	83%	
Surrogate o-Terphenyl	%		[NT]		[NT]	167400-3	85%	
QUALITYCONTROL	UNITS	<u>з</u> г	Dup.Sm#		Duplicate			
PAHs in Water				Base+I	Duplicate + %RP	D		
Date extracted	-	1	167400-2	23/05/2	2017 23/05/201	7		
Date analysed	-	1	167400-2	24/05/2	2017 24/05/201	7		
Naphthalene	µg/L	1	167400-2		<1 <1			
Acenaphthylene	µg/L	1	167400-2		<1 <1			
Acenaphthene	µg/L	1	167400-2		<1 <1			
Fluorene	µg/L	1	167400-2		<1 <1			
Phenanthrene	µg/L	1	167400-2		<1 <1			
Anthracene	µg/L	1	167400-2		<1 <1			
Fluoranthene	µg/L	1	167400-2		<1 <1			
Pyrene	µg/L	1	167400-2		<1 <1			
Benzo(a)anthracene	µg/L	1	167400-2		<1 <1			
Chrysene	µg/L	1	167400-2		<1 <1			
Benzo(b,j+k)fluoranthene	μg/L	1	167400-2		<2 <2			
Benzo(a)pyrene	µg/L	1	167400-2		<1 <1			
Indeno(1,2,3-c,d)pyrene	µg/L	1	167400-2		<1 <1			
Dibenzo(a,h)anthracene	µg/L	1	167400-2		<1 <1			
Benzo(g,h,i)perylene	µg/L	1	167400-2		<1 <1			
Surrogate p-Terphenyl-d1	4 %	1	167400-2	89	115 RPD:25			

QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
OCP in water - Trace level			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	167400-2	23/05/2017
Date analysed	-	[NT]	[NT]	167400-2	25/05/2017
HCB	µg/L	[NT]	[NT]	[NR]	[NR]
alpha-BHC	µg/L	[NT]	[NT]	167400-2	100%
gamma-BHC	µg/L	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	[NT]	[NT]	167400-2	96%
Heptachlor	µg/L	[NT]	[NT]	167400-2	99%
delta-BHC	µg/L	[NT]	[NT]	[NR]	[NR]
Aldrin	µg/L	[NT]	[NT]	167400-2	113%
Heptachlor Epoxide	µg/L	[NT]	[NT]	167400-2	84%
gamma-Chlordane	µg/L	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	µg/L	[NT]	[NT]	[NR]	[NR]
Endosulfan I	µg/L	[NT]	[NT]	[NR]	[NR]
pp-DDE	µg/L	[NT]	[NT]	167400-2	71%
Dieldrin	µg/L	[NT]	[NT]	167400-2	104%
Endrin	µg/L	[NT]	[NT]	[NR]	[NR]
pp-DDD	µg/L	[NT]	[NT]	[NR]	[NR]
Endosulfan II	µg/L	[NT]	[NT]	167400-2	84%
DDT	µg/L	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	µg/L	[NT]	[NT]	167400-2	84%
Methoxychlor	µg/L	[NT]	[NT]	[NR]	[NR]
Mirex	µg/L	[NT]	[NT]	[NR]	[NR]
S <i>urrogate p</i> -Terphenyl- d ₁₄	%	[NT]	[NT]	167400-2	93%

Client Reference: 71459.09, Prop Residential Development, Mooreb						
QUALITY CONTROL OP in water Trace ANZECCF/ADWG	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	[NT]	[NT]	167400-2	23/05/2017	
Date analysed	-	[NT]	[NT]	167400-2	25/05/2017	
Azinphos-methyl (Guthion)	µg/L	[NT]	[NT]	[NR]	[NR]	
Bromophos ethyl	µg/L	[NT]	[NT]	[NR]	[NR]	
Chlorpyriphos	µg/L	[NT]	[NT]	167400-2	90%	
Chlorpyriphos-methyl	µg/L	[NT]	[NT]	167400-2	100%	
Diazinon	µg/L	[NT]	[NT]	[NR]	[NR]	
Dichlorovos	µg/L	[NT]	[NT]	[NR]	[NR]	
Dimethoate	µg/L	[NT]	[NT]	[NR]	[NR]	
Ethion	µg/L	[NT]	[NT]	167400-2	92%	
Fenitrothion	µg/L	[NT]	[NT]	167400-2	96%	
Malathion	µg/L	[NT]	[NT]	[NR]	[NR]	
Parathion	µg/L	[NT]	[NT]	[NR]	[NR]	
Methyl Parathion	µg/L	[NT]	[NT]	[NR]	[NR]	
Ronnel	µg/L	[NT]	[NT]	[NR]	[NR]	
<i>Surrogate p</i> -Terphenyl- d14	%	[NT]	[NT]	167400-2	93%	
QUALITY CONTROL PCB in water - trace level Aroclors	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date prepared	-	[NT]	[NT]	167400-2	23/05/2017	
Date analysed	-	[NT]	[NT]	167400-2	25/05/2017	
Aroclor 1016	µg/L	[NT]	[NT]	[NR]	[NR]	
Aroclor 1221	µg/L	[NT]	[NT]	[NR]	[NR]	
Aroclor 1232	µg/L	[NT]	[NT]	[NR]	[NR]	
Aroclor 1242	µg/L	[NT]	[NT]	[NR]	[NR]	
Aroclor 1248	µg/L	[NT]	[NT]	[NR]	[NR]	
Aroclor 1254	µg/L	[NT]	[NT]	167400-2	77%	
Aroclor 1260	µg/L	[NT]	[NT]	[NR]	[NR]	
Total PCB	µg/L	[NT]	[NT]	[NR]	[NR]	
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	167400-2	93%	

		Client Reference	nce: 71459.09, Prop Residential Development, Mooreba				
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
HM in water - dissolved			Base + Duplicate + % RPD				
Date prepared	-	[NT]	[NT]	167400-2	22/05/2017		
Date analysed	-	[NT]	[NT]	167400-2	22/05/2017		
Arsenic-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
Cadmium-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
Chromium-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
Copper-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
Lead-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
Manganese-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
Mercury-Dissolved	µg/L	[NT]	[NT]	167400-2	108%		
Nickel-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
Zinc-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
Perfluoroalkylated			Base + Duplicate + % RPD				
Date prepared	-	[NT]	[NT]	167400-2	24/05/2017		
Date analysed	-	[NT]	[NT]	167400-2	24/05/2017		
Perfluorobutanesulfonic acid	µg/L	[NT]	[NT]	167400-2	99%		
Perfluoropentanesulfonic acid*	µg/L	[NT]	[NT]	167400-2	101%		
Perfluorohexanesulfonic acid	µg/L	[NT]	[NT]	167400-2	101%		
Perfluoroheptanesulfonic acid*	µg/L	[NT]	[NT]	167400-2	111%		
Perfluorooctanesulfonic acidPFOS	µg/L	[NT]	[NT]	167400-2	105%		
Perfluorodecanesulfonic acid	µg/L	[NT]	[NT]	167400-2	95%		
Perfluorobutanoic acid	µg/L	[NT]	[NT]	167400-2	101%		
Perfluoropentanoic acid*	µg/L	[NT]	[NT]	167400-2	96%		
Perfluorohexanoic acid	µg/L	[NT]	[NT]	167400-2	103%		
Perfluoroheptanoic acid	µg/L	[NT]	[NT]	167400-2	102%		
Perfluorooctanoic acid PFOA	µg/L	[NT]	[NT]	167400-2	105%		
Perfluorononanoic acid	µg/L	[NT]	[NT]	167400-2	94%		
Perfluorodecanoic acid	µg/L	[NT]	[NT]	167400-2	98%		
Perfluoroundecanoic acid	µg/L	[NT]	[NT]	167400-2	105%		
Perfluorododecanoic acid	µg/L	[NT]	[NT]	167400-2	92%		
Perfluorotridecanoic acid	µg/L	[NT]	[NT]	167400-2	70%		
Perfluorotetradecanoic acid	µg/L	[NT]	[NT]	167400-2	83%		
4:2FTS	µg/L	[NT]	[NT]	167400-2	98%		
6:2FTS	µg/L	[NT]	[NT]	167400-2	103%		
8:2FTS	µg/L	[NT]	[NT]	167400-2	96%		
10:2FTS*	µg/L	[NT]	[NT]	167400-2	68%		

		Client Reference: 71459.09, Prop Residential Development, Moorebank				
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
Perfluoroalkylated Substances in Waters			Base + Duplicate + % RPD			
		N T		407400.0	10.10/	
sulfonamide	µg/L	[N I]	[N1]	167400-2	104%	
N-Methyl perfluorooctane sulfonamide	µg/L	[NT]	[NT]	167400-2	100%	
N-Ethyl perfluorooctanesulfon - amide	µg/L	[NT]	[NT]	167400-2	84%	
N-Me perfluorooctanesulfonamid -oethanol	µg/L	[NT]	[NT]	167400-2	85%	
N-Et perfluorooctanesulfonamid -oethanol	µg/L	[NT]	[NT]	167400-2	120%	
MePerfluorooctanesulf- amid oacetic acid	µg/L	[NT]	[NT]	167400-2	71%	
EtPerfluorooctanesulf- amid oacetic acid	µg/L	[NT]	[NT]	167400-2	113%	
Surrogate ¹³ C ₈ PFOS	%	[NT]	[NT]	167400-2	98%	
Surrogate ¹³ C2 PFOA	%	[NT]	[NT]	167400-2	105%	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
OCP in water - Trace level			Base + Duplicate + % RPD			
Date extracted	-	[NT]	[NT]	LCS-1	23/05/2017	
Date analysed	-	[NT]	[NT]	LCS-1	25/05/2017	
HCB	µg/L	[NT]	[NT]	[NR]	[NR]	
alpha-BHC	µg/L	[NT]	[NT]	LCS-1	131%	
gamma-BHC	µg/L	[NT]	[NT]	[NR]	[NR]	
beta-BHC	µg/L	[NT]	[NT]	LCS-1	131%	
Heptachlor	µg/L	[NT]	[NT]	LCS-1	102%	
delta-BHC	µg/L	[NT]	[NT]	[NR]	[NR]	
Aldrin	µg/L	[NT]	[NT]	LCS-1	101%	
Heptachlor Epoxide	µg/L	[NT]	[NT]	LCS-1	106%	
gamma-Chlordane	µg/L	[NT]	[NT]	[NR]	[NR]	
alpha-Chlordane	µg/L	[NT]	[NT]	[NR]	[NR]	
Endosulfan I	µg/L	[NT]	[NT]	[NR]	[NR]	
pp-DDE	µg/L	[NT]	[NT]	LCS-1	122%	
Dieldrin	µg/L	[NT]	[NT]	LCS-1	114%	
Endrin	µg/L	[NT]	[NT]	[NR]	[NR]	
pp-DDD	µg/L	[NT]	[NT]	LCS-1	124%	
Endosulfan II	µg/L	[NT]	[NT]	[NR]	[NR]	
DDT	µg/L	[NT]	[NT]	[NR]	[NR]	
Endosulfan Sulphate	µg/L	[NT]	[NT]	LCS-1	119%	
Methoxychlor	µg/L	[NT]	[NT]	[NR]	[NR]	
Mirex	µg/L	[NT]	[NT]	[NR]	[NR]	
Surrogate p-Terphenyl- d14	%	[NT]	[NT]	LCS-1	118%	

		Client Reference	e: 71459.09, Prop Re	sidential Develop	oment, Moorebank
QUALITYCONTROL OP in water Trace ANZECCF/ADWG	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-1	23/05/2017
Date analysed	-	[NT]	[NT]	LCS-1	25/05/2017
Azinphos-methyl (Guthion)	µg/L	[NT]	[NT]	[NR]	[NR]
Bromophos ethyl	µg/L	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	µg/L	[NT]	[NT]	LCS-1	117%
Chlorpyriphos-methyl	µg/L	[NT]	[NT]	LCS-1	119%
Diazinon	µg/L	[NT]	[NT]	[NR]	[NR]
Dichlorovos	µg/L	[NT]	[NT]	[NR]	[NR]
Dimethoate	µg/L	[NT]	[NT]	[NR]	[NR]
Ethion	µg/L	[NT]	[NT]	LCS-1	117%
Fenitrothion	µg/L	[NT]	[NT]	LCS-1	104%
Malathion	µg/L	[NT]	[NT]	[NR]	[NR]
Parathion	µg/L	[NT]	[NT]	[NR]	[NR]
Methyl Parathion	µg/L	[NT]	[NT]	[NR]	[NR]
Ronnel	µg/L	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d ₁₄	%	[NT]	[NT]	LCS-1	118%
QUALITY CONTROL PCB in water - trace level Aroclors	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	LCS-1	23/05/2017
Date analysed	-	[NT]	[NT]	LCS-1	25/05/2017
Aroclor 1016	µg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	µg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	µg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	µg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	µg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	µg/L	[NT]	[NT]	LCS-1	106%
Aroclor 1260	µg/L	[NT]	[NT]	[NR]	[NR]
Total PCB	µg/L	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	LCS-1	118%

Report Comments:

OC/OP/PCB's in water analysed by MPL Laboratories. Report No.196013. Total PCB aroclors determined by the sum of PCB congeners. #Unable to determine aroclor type at trace levels.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

	CERTIFICATE OF ANALYS	SIS	17	2072
Client:				
Douglas Partners Pty Ltd				
96 Hermitage Rd				
West Ryde				
NSW 2114				
Attention: John Russell, Chr	is Bagia			
Sample log in details:				
Your Reference:		71459.09, Pro	op Res	idential Development, Moorebank
No. of samples:		7 Waters		
Date samples received / compl	eted instructions received	25/07/17	/	25/07/17
Analysis Details:				
Please refer to the following pa	ges for results, methodology	summary and o	quality	control data.
Samples were analysed as rec	eived from the client. Results	relate specifica	ally to t	he samples as received.
Results are reported on a dry w	veight basis for solids and on	an as received	basis f	or other matrices.
Please refer to the last page	of this report for any comm	ents relating t	o the r	esults.
Report Details:				
Date results requested by: / Iss	sue Date:	1/08/17	/	31/07/17
Date of Preliminary Report:		Not Issued		
NATA accreditation number 29	01. This document shall not b	e reproduced e	except i	in full.
Accredited for compliance with	ISO/IEC 17025 - Testing	Tests n	ot cov	ered by NATA are denoted with *.
Results Approved By:				

David Springer General Manager

Miscellaneous Inorganics Our Reference: Your Reference	UNITS	172072-1 SW1	172072-2 SW2	172072-3 SW2	172072-4 SW3	172072-5 SW3
Depth Date Sampled Type of sample		- 25/07/2017 Water	0.5 25/07/2017 Water	1.0 25/07/2017 Water	0.5 25/07/2017 Water	1.0 25/07/2017 Water
Date prepared Date analysed	-	25/07/2017 25/07/2017	25/07/2017 25/07/2017	25/07/2017 25/07/2017	25/07/2017 25/07/2017	25/07/2017 25/07/2017
Ammonia as N in water	mg/L	<0.005	0.16	0.14	0.11	0.10

Miscellaneous Inorganics			
Our Reference:	UNITS	172072-6	172072-7
Your Reference		SW4	BD1
	-		
Depth		-	-
Date Sampled		25/07/2017	25/07/2017
Type of sample		Water	Water
Date prepared	-	25/07/2017	25/07/2017
Date analysed	-	25/07/2017	25/07/2017
Ammonia as N in water	mg/L	<0.005	<0.005

Method ID	Methodology Summary
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.

Client Reference: 71459.09, Prop Residential Development, Moorebank

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Dup	plicate results	Spike Sm#	Spike % Recove	6 ery
Miscellaneous Inorganics						Bas	se II Duplicate II %RPD			
Date prepared	-			25/07/2 017	172072-1	25	5/07/2017 25/07/2017	LCS-W1	25/07	/2017
Date analysed	-			25/07/2 017	172072-1	25	5/07/2017 25/07/2017	LCS-W1	25/07	/2017
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	172072-1		<0.005 <0.005	LCS-W1	102	2%
QUALITYCONTROL	UNITS	S I	Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	very	
Miscellaneous Inorganics				Base+I	Duplicate + %RP	D				
Date prepared	-		[NT]		[NT]		172072-2	25/07/201	7	
Date analysed	-		[NT]		[NT]		172072-2	25/07/201	7	
Ammonia as N in water	mg/L	-	[NT]		[NT]		172072-2	91%		

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 182075

Client Details	
Client	Douglas Partners Pty Ltd
Attention	John Russell, Jack Snowden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	71459.09, Moorebank
Number of Samples	4 Water
Date samples received	14/12/2017
Date completed instructions received	14/12/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	21/12/2017				
Date of Issue	18/12/2017				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor

Authorised By

كع

David Springer, General Manager

Client Reference: 71459.09, Moorebank

Miscellaneous Inorganics					
Our Reference		182075-1	182075-2	182075-3	182075-4
Your Reference	UNITS	SW1	SW2	SW3	SW4
Date Sampled		13/12/2017	13/12/2017	13/12/2017	13/12/2017
Type of sample		Water	Water	Water	Water
Date prepared	-	14/12/2017	14/12/2017	14/12/2017	14/12/2017
Date analysed	-	14/12/2017	14/12/2017	14/12/2017	14/12/2017
Ammonia as N in water	mg/L	0.030	0.040	0.21	0.029

Client Reference: 71459.09, Moorebank

Method ID	Methodology Summary
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.

Client Reference: 71459.09, Moorebank

QUALITY CONTROL: Miscellaneous Inorganics						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	182075-2
Date prepared	-			14/12/2017	1	14/12/2017	14/12/2017		14/12/2017	14/12/2017
Date analysed	-			14/12/2017	1	14/12/2017	14/12/2017		14/12/2017	14/12/2017
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.030	0.028	7	90	90
Result Definiti	ons									
-----------------	---									
NT	Not tested									
NA	Test not required									
INS	Insufficient sample for this test									
PQL	Practical Quantitation Limit									
<	Less than									
>	Greater than									
RPD	Relative Percent Difference									
LCS	Laboratory Control Sample									
NS	Not specified									
NEPM	National Environmental Protection Measure									
NR	Not Reported									

Quality Control	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking V	Nater Guidelines recommend that Thermotolerant Coliform, Eaecal Enterococci, & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 184133

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Celine Li, John Russell
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	71459.09, Moorebank
Number of Samples	7 water
Date samples received	30/01/2018
Date completed instructions received	30/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	07/02/2018
Date of Issue	07/02/2018
NATA Accreditation Number 2901. Th	s document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Jaimie Loa-Kum-Cheung, Senior Chemist Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals Nancy Zhang, Assistant Lab Manager Nick Sarlamis, Inorganics Supervisor Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Water								
Our Reference		184133-1	184133-2	184133-3	184133-4	184133-6		
Your Reference	UNITS	SW1	SW2	SW3	SW4	TRIP SPIKE		
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018		
Type of sample		water	water	water	water	water		
Date extracted	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018		
Date analysed	-	02/02/2018	02/02/2018	02/02/2018	02/02/2018	02/02/2018		
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	[NA]		
TRH C6 - C10	µg/L	<10	<10	<10	<10	[NA]		
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	[NA]		
Benzene	µg/L	<1	<1	<1	<1	93%		
Toluene	µg/L	<1	<1	<1	<1	93%		
Ethylbenzene	µg/L	<1	<1	<1	<1	100%		
m+p-xylene	µg/L	<2	<2	<2	<2	100%		
o-xylene	µg/L	<1	<1	<1	<1	99%		
Naphthalene	µg/L	<1	<1	<1	<1	[NA]		
Surrogate Dibromofluoromethane	%	97	92	77	91	94		
Surrogate toluene-d8	%	95	97	105	99	97		
Surrogate 4-BFB	%	105	103	103	105	104		

VIRH(C6-C10)/BIEXN in Water		
Our Reference		184133-7
Your Reference	UNITS	TRIP BLANK
Date Sampled		30/01/2018
Type of sample		water
Date extracted	-	01/02/2018
Date analysed	-	02/02/2018
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	105
Surrogate toluene-d8	%	105
Surrogate 4-BFB	%	95

svTRH (C10-C40) in Water							
Our Reference		184133-1	184133-2	184133-3	184133-4		
Your Reference	UNITS	SW1	SW2	SW3	SW4		
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018		
Type of sample		water	water	water	water		
Date extracted	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018		
Date analysed	-	02/02/2018	02/02/2018	02/02/2018	02/02/2018		
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50		
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100		
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100		
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50		
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50		
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100		
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100		
Surrogate o-Terphenyl	%	70	69	69	78		

PAHs in Water					
Our Reference		184133-1	184133-2	184133-3	184133-4
Your Reference	UNITS	SW1	SW2	SW3	SW4
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018
Type of sample		water	water	water	water
Date extracted	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Date analysed	-	02/02/2018	02/02/2018	02/02/2018	02/02/2018
Naphthalene	µg/L	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	100	97	100	108

OCP in water - Trace level					
Our Reference		184133-1	184133-2	184133-3	184133-4
Your Reference	UNITS	SW1	SW2	SW3	SW4
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018
Type of sample		water	water	water	water
Date extracted	-	06/02/2018	06/02/2018	06/02/2018	06/02/2018
Date analysed	-	06/02/2018	06/02/2018	06/02/2018	06/02/2018
НСВ	µg/L	<0.001	<0.001	<0.001	<0.001
alpha-BHC	µg/L	<0.001	<0.001	<0.001	<0.001
gamma-BHC	µg/L	<0.001	<0.001	<0.001	<0.001
beta-BHC	µg/L	<0.001	<0.001	<0.001	<0.001
Heptachlor	µg/L	<0.001	<0.001	<0.001	<0.001
delta-BHC	µg/L	<0.001	<0.001	<0.001	<0.001
Aldrin	µg/L	<0.001	<0.001	<0.001	<0.001
Heptachlor Epoxide	µg/L	<0.001	<0.001	<0.001	<0.001
gamma-Chlordane	µg/L	<0.001	0.001	0.001	<0.001
alpha-Chlordane	µg/L	<0.001	0.001	0.001	<0.001
Endosulfan I	µg/L	<0.002	<0.002	<0.002	<0.002
pp-DDE	µg/L	<0.001	<0.001	<0.001	<0.001
Dieldrin	µg/L	<0.001	0.002	0.002	<0.001
Endrin	µg/L	<0.001	<0.001	<0.001	<0.001
pp-DDD	μg/L	<0.001	<0.001	<0.001	<0.001
Endosulfan II	µg/L	<0.002	<0.002	<0.002	<0.002
DDT	µg/L	<0.001	<0.001	<0.001	<0.001
Endosulfan Sulphate	µg/L	<0.001	<0.001	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001	<0.001	<0.001
Mirex	µg/L	<0.002	<0.002	<0.002	<0.002
Surrogate p-Terphenyl-d ₁₄	%	83	80	78	80

OP in water Trace ANZECCF/ADWG					
Our Reference		184133-1	184133-2	184133-3	184133-4
Your Reference	UNITS	SW1	SW2	SW3	SW4
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018
Type of sample		water	water	water	water
Date extracted	-	06/02/2018	06/02/2018	06/02/2018	06/02/2018
Date analysed	-	06/02/2018	06/02/2018	06/02/2018	06/02/2018
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02	<0.02	<0.02
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	µg/L	<0.009	<0.009	<0.009	<0.009
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2	<0.2
Diazinon	µg/L	<0.01	<0.01	<0.01	<0.01
Dichlorovos	µg/L	<0.2	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15	<0.15	<0.15
Ethion	µg/L	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05	<0.05	<0.05
Parathion	µg/L	<0.004	<0.004	<0.004	<0.004
Methyl Parathion	µg/L	<0.2	<0.2	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2	<0.2	<0.2
Surrogate p-Terphenyl-d ₁₄	%	83	80	78	80

PCB in water - trace level Aroclors							
Our Reference		184133-1	184133-2	184133-3	184133-4		
Your Reference	UNITS	SW1	SW2	SW3	SW4		
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018		
Type of sample		water	water	water	water		
Date prepared	-	06/02/2018	06/02/2018	06/02/2018	06/02/2018		
Date analysed	-	06/02/2018	06/02/2018	06/02/2018	06/02/2018		
Aroclor 1016	µg/L	<0.01	<0.01	<0.01	<0.01		
Aroclor 1221	µg/L	<0.01	<0.01	<0.01	<0.01		
Aroclor 1232	µg/L	<0.01	<0.01	<0.01	<0.01		
Aroclor 1242	µg/L	<0.01	<0.01	<0.01	<0.01		
Aroclor 1248	µg/L	<0.01	<0.01	<0.01	<0.01		
Aroclor 1254	µg/L	<0.01	<0.01	<0.01	<0.01		
Aroclor 1260	µg/L	<0.01	<0.01	<0.01	<0.01		
Surrogate p-Terphenyl-d14	%	83	80	78	80		

Total Phenolics in Water					
Our Reference		184133-1	184133-2	184133-3	184133-4
Your Reference	UNITS	SW1	SW2	SW3	SW4
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018
Type of sample		water	water	water	water
Date extracted	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Date analysed	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		184133-1	184133-2	184133-3	184133-4	184133-5
Your Reference	UNITS	SW1	SW2	SW3	SW4	BD1300118
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Type of sample		water	water	water	water	water
Date prepared	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Date analysed	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Arsenic-Dissolved	µg/L	1	4	4	<1	4
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	1	1	1	<1	1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	µg/L	45	200	210	39	230
Nickel-Dissolved	µg/L	2	2	2	2	2
Zinc-Dissolved	µg/L	9	5	2	4	4

Miscellaneous Inorganics						
Our Reference		184133-1	184133-2	184133-3	184133-4	184133-5
Your Reference	UNITS	SW1	SW2	SW3	SW4	BD1300118
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Type of sample		water	water	water	water	water
Date prepared	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Nitrate as N in water	mg/L	0.04	1.3	<0.005	0.05	<0.005
Nitrite as N in water	mg/L	0.005	<0.005	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	0.007	0.014	0.033	0.008	0.039

Metals in Waters - Acid extractable						
Our Reference		184133-1	184133-2	184133-3	184133-4	184133-5
Your Reference	UNITS	SW1	SW2	SW3	SW4	BD1300118
Date Sampled		30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Type of sample		water	water	water	water	water
Date prepared	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Date analysed	-	02/02/2018	02/02/2018	02/02/2018	02/02/2018	02/02/2018
Phosphorus - Total	mg/L	0.07	<0.05	<0.05	0.07	0.06

Method ID	Methodology Summary
Ext-054	Analysed by MPL Envirolab
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-055	Nitrate - determined colourimetrically. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			01/02/2018	1	01/02/2018	02/02/2018		01/02/2018		
Date analysed	-			02/02/2018	1	02/02/2018	02/02/2018		02/02/2018		
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	1	<10	<10	0	103		
TRH C ₆ - C ₁₀	µg/L	10	Org-016	<10	1	<10	<10	0	103		
Benzene	μg/L	1	Org-016	<1	1	<1	<1	0	101		
Toluene	µg/L	1	Org-016	<1	1	<1	<1	0	93		
Ethylbenzene	μg/L	1	Org-016	<1	1	<1	<1	0	99		
m+p-xylene	µg/L	2	Org-016	<2	1	<2	<2	0	110		
o-xylene	μg/L	1	Org-016	<1	1	<1	<1	0	107		
Naphthalene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-016	73	1	97	100	3	96		
Surrogate toluene-d8	%		Org-016	107	1	95	106	11	94		
Surrogate 4-BFB	%		Org-016	105	1	105	102	3	113		

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water		Duplicate Spike R					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			01/02/2018	[NT]		[NT]	[NT]	01/02/2018	
Date analysed	-			02/02/2018	[NT]		[NT]	[NT]	02/02/2018	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	114	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	118	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	114	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	118	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-003	60	[NT]	[NT]	[NT]	[NT]	91	[NT]

QUALITY	CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			01/02/2018	[NT]		[NT]	[NT]	01/02/2018	
Date analysed	-			02/02/2018	[NT]		[NT]	[NT]	02/02/2018	
Naphthalene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	70	
Acenaphthylene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Fluorene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	76	
Phenanthrene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	76	
Anthracene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	83	
Pyrene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	102	
Benzo(a)anthracene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	79	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	73	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	100	[NT]	[NT]	[NT]	[NT]	109	[NT]

QUALITY CON	NTROL: OCF	in water	- Trace level			Du	Duplicate Spike F				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			06/02/2018	[NT]		[NT]	[NT]	06/02/2018		
Date analysed	-			06/02/2018	[NT]		[NT]	[NT]	06/02/2018		
НСВ	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
alpha-BHC	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	92		
gamma-BHC	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
beta-BHC	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	61		
Heptachlor	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
delta-BHC	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
Aldrin	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	120		
Heptachlor Epoxide	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	96		
gamma-Chlordane	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	µg/L	0.002	Org-005	<0.002	[NT]		[NT]	[NT]	[NT]		
pp-DDE	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	107		
Dieldrin	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	101		
Endrin	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
pp-DDD	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	130		
Endosulfan II	µg/L	0.002	Org-005	<0.002	[NT]		[NT]	[NT]	[NT]		
DDT	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	61		
Methoxychlor	µg/L	0.001	Org-005	<0.001	[NT]		[NT]	[NT]	[NT]		
Mirex	µg/L	0.002	Org-012	<0.002	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d ₁₄	%		Org-012	89	[NT]	[NT]	[NT]	[NT]	122	[NT]	

QUALITY CONTRO	L: OP in wa	ter Trace	ANZECCF/ADWG			Du	Spike Re	covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			06/02/2018	[NT]		[NT]	[NT]	06/02/2018	
Date analysed	-			06/02/2018	[NT]		[NT]	[NT]	06/02/2018	
Azinphos-methyl (Guthion)	µg/L	0.02	Ext-054	<0.02	[NT]		[NT]	[NT]	[NT]	
Bromophos ethyl	µg/L	0.2	Ext-054	<0.2	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos	µg/L	0.009	Ext-054	<0.009	[NT]		[NT]	[NT]	93	
Chlorpyriphos-methyl	µg/L	0.2	Ext-054	<0.2	[NT]		[NT]	[NT]	92	
Diazinon	µg/L	0.01	Ext-054	<0.01	[NT]		[NT]	[NT]	[NT]	
Dichlorovos	µg/L	0.2	Ext-054	<0.2	[NT]		[NT]	[NT]	[NT]	
Dimethoate	µg/L	0.15	Ext-054	<0.15	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Ext-054	<0.2	[NT]		[NT]	[NT]	99	
Fenitrothion	µg/L	0.2	Ext-054	<0.2	[NT]		[NT]	[NT]	63	
Malathion	µg/L	0.05	Ext-054	<0.05	[NT]		[NT]	[NT]	[NT]	
Parathion	µg/L	0.004	Ext-054	<0.004	[NT]		[NT]	[NT]	[NT]	
Methyl Parathion	µg/L	0.2	Ext-054	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Ext-054	<0.2	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Ext-054	89	[NT]	[NT]	[NT]	[NT]	122	[NT]

QUALITY CONTR	OL: PCB in v	vater - tra	ce level Aroclors			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			06/02/2018	[NT]		[NT]	[NT]	06/02/2018	
Date analysed	-			06/02/2018	[NT]		[NT]	[NT]	06/02/2018	
Aroclor 1016	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	130	
Aroclor 1260	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Ext-054	89	[NT]		[NT]	[NT]	122	

QUALITY CO	NTROL: Tot	al Phenol	ics in Water			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			01/02/2018	[NT]		[NT]	[NT]	01/02/2018	[NT]
Date analysed	-			01/02/2018	[NT]		[NT]	[NT]	01/02/2018	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY CONTROL: HM in water - dissolved					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	184133-3
Date prepared	-			01/02/2018	2	01/02/2018	01/02/2018		01/02/2018	01/02/2018
Date analysed	-			01/02/2018	2	01/02/2018	01/02/2018		01/02/2018	01/02/2018
Arsenic-Dissolved	µg/L	1	Metals-022	<1	2	4	[NT]		99	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	2	<0.1	[NT]		106	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	2	<1	[NT]		97	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	2	1	[NT]		99	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	2	<1	[NT]		108	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	2	<0.05	<0.05	0	108	107
Manganese-Dissolved	µg/L	5	Metals-022	<5	2	200	[NT]		98	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	2	2	[NT]		97	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	2	5	[NT]		98	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	184133-2
Date prepared	-			30/01/2018	1	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Date analysed	-			30/01/2018	1	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.04	0.04	0	101	100
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.005	0.005	0	117	106
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.007	0.006	15	112	103

QUALITY CONTROL: Metals in Waters - Acid extractable					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			01/02/2018	[NT]		[NT]	[NT]	01/02/2018	[NT]
Date analysed	-			02/02/2018	[NT]		[NT]	[NT]	02/02/2018	[NT]
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]	[NT]	[NT]	98	[NT]

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						
Accelling Deindeinen I	Notes Ovidalizes as several that The superstale sent Orliferes. Freedol Faters as as in Coli laurely and less these						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45 μ m filter at the lab. Note: there is a possibility some elements may be underestimated.

OCP/OP/PCB analysed by MPL. Report no. 206234

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 187774

Client Details	
Client	Douglas Partners Pty Ltd
Attention	John Russell, Nicola Warton
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>71459.09, Moorebank</u>
Number of Samples	5 WATER
Date samples received	21/03/2018
Date completed instructions received	21/03/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	28/03/2018				
Date of Issue	23/03/2018				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor

Authorised By

کھ

David Springer, General Manager

Miscellaneous Inorganics						
Our Reference		187774-1	187774-2	187774-3	187774-4	187774-5
Your Reference	UNITS	SW1	SW2	SW3	SW4	BD1/20180320
Date Sampled		20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Type of sample		WATER	WATER	WATER	WATER	WATER
Date prepared	-	21/03/2018	21/03/2018	21/03/2018	21/03/2018	21/03/2018
Date analysed	-	21/03/2018	21/03/2018	21/03/2018	21/03/2018	21/03/2018
Ammonia as N in water	mg/L	0.029	0.014	0.023	0.012	0.017

Method ID	Methodology Summary
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.

QUALITY CONTROL: Miscellaneous Inorganics					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	187774-2
Date prepared	-			21/03/2018	1	21/03/2018	21/03/2018		21/03/2018	21/03/2018
Date analysed	-			21/03/2018	1	21/03/2018	21/03/2018		21/03/2018	21/03/2018
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.029	0.024	19	86	87

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				
Accelling Deindeinen I	Notes Ovidalizes as several that The superstale sent Orliferes. Freedol Faters as as in Coli laurely and less these				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

WATERTEST

Office: PO BOX 591 SEVEN HILLS NSW 2147

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8294 Fax: (02) 9838 8919 A.C.N. 098 982 140 A.B.N. 76 098 982 140 NATA No: 1884

ANALYTICAL REPORT for:

BENEDICT INDUSTRIES PTY LTD

PO BOX 10 MOOREBANK NSW 1875

ATTN: FLOYDE GILBERT

- JOB NO: WC1334
- CLIENT ORDER: BI 21391

DATE RECEIVED: 18/12/17

DATE COMPLETED: 12/01/18

TYPE OF SAMPLES: WATER

NO OF SAMPLES: 1

man Issued on 1 /18 0 Sue Wyman

(Laboratory Supervisor)

1.0

WATERTEST

Page 2 of 4

ANALYTICAL REPORT

JOB NO: WC1334 CLIENT ORDER: BI 21391

DATE OF COLLECTION SAMPLES		18/12/17 BOAT RAMP	18/12/17 BLANK	18/12/17 BOAT DUP
Biochemical Oxygen Demand	mq/L	<2	<2	<2
Chemical Oxygen Demand	mg/L	16	<2	17
Conductivity	uS/cm	43800	1.1	43900
Ammonium Nitrogen	mg/L	<0.1	<0.1	<0.1
Oxidised Nitrogen NOx-N	mg/L	0.08	<0.1	0.08
Total Kjeldahl Nitrogen	mg/L	0.6	<0.1	0.6
Total Nitrogen	mg/L	0.7	<0.1	0.7
рн		7.1	6.9	7.1
Total Phosphorus	mg/L	<0.1	<0.1	<0.1
Suspended Solids	mg/L	7	<2	7
Turbidity	NTU	4.0	<0.2	4.0
Soluble Mercury	mg/L	<0.0001	<0.0001	<0.0001
Total Mercury	mg/L	<0.0001	<0.0001	<0.0001
Dissolved Oxygen	mg/L	8.1	8.0	8.1

LABORATORY DUPLICATE REPORT

JOB NO: WC1334 CLIENT ORDER: BI 21391

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
BOAT/RAMP	BOD	mg/L	2	<2	<2	0
BOAT/RAMP	COD	mg/L	2	16	17	6
BOAT/RAMP	Conductivity	uS/cm	0.1	43800	43900	0
BOAT/RAMP	Ammonium	mg/L	0.1	<0.1	<0.1	0
BOAT/RAMP	Oxidised N	mg/L	0.1	0.08	0.08	0
BOAT/RAMP	TKN	mg/L	0.1	0.6	0.6	0
BOAT/RAMP	Total Nitrogen	mg/L	0.1	0.7	0.7	0
BOAT/RAMP	pH	-	0.1	7.1	7.1	0
BOAT/RAMP	Total Phosphor	mg/L	0.01	<0.1	<0.1	0
BOAT/RAMP	Suspended Soli	mg/L	2	7	7	0
BOAT/RAMP	Turbidity	NTU	0.2	4.0	4.0	0
BOAT/RAMP	Soluble Mercur	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Total Mercury	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Dissolved Oxyg	mg/L	0.1	8.1	8.1	0

Acceptance criteria:

RPD <50% for low level (<10xMDL)
RPD <20% for medium level (10-50xMDL)
RPD <10% for high level (>50xMDL)
No limit applies at <2xMDL</pre>

MDL = Method Detection Limit

All results are within the acceptance criteria
ANALYTICAL REPORT

JOB NO: WC1334 CLIENT ORDER: BI 21391

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory, in accordance with APHA Standard Methods of Water and Wastewater 22nd Edition, or other approved methods listed below:

5210B	Biochemical Oxygen Demand
5220D	Chemical Oxygen Demand
2510B	Conductivity
4500G	Ammonium Nitrogen
4500F	Oxidised Nitrogen NOx-N
4500BC	Total Kjeldahl Nitrogen
CALC.	Total Nitrogen
4500B	Н
4500BF	Total Phosphorus
2540D	Suspended Solids
2130B	Turbidity
3112B	Soluble Mercury
3112B	Total Mercury
5210B	Dissolved Oxygen
	2 J "
	A DODINGON DDITTE DONE DAND

SITE: DAVY ROBINSON DRIVE BOAT RAMP AREA SAMPLER: DAN ANDREWS TIME: 11:30am

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 182702

Client Details		
Client Watertes	t Pty Ltd	100 JUL 100 JUL 1
Attention Results E	mail	
Address Unit 1/4 A	Abbott Rd, Seven Hills, NSW, 2147	

Sample Details								
Your Reference	WC1334							
Number of Samples	1 water							
Date samples received	22/12/2017							
Date completed instructions received	22/12/2017	 ۰ ۱۹۰۰ -	· · · · · · · · · · · · · · · · · · ·	n in the second s	an an an Araba Anna an Araba	1	n na h	an a

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	05/01/2018				
Date of Issue	05/01/2018				
NATA Accreditation Number 2901. T	his document shall not be	reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					
(a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	· · · · · · · · · · · · · · · · · · ·				

Results Approved By Giovanni Agosti, Group Technical Manager Jeremy Faircloth, Organics Supervisor

Authorised By

yes

David Springer, General Manager

Envirolab Reference: 182702 Revision No: R00

Page | 1 of 9

PAHs in Water	in the second	
Our Reference		182702-1
Your Reference	UNITS	Boat Ramp
Date Sampled		18/12/2017
Type of sample		water
Date extracted	-	28/12/2017
Date analysed	-	28/12/2017
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a')pyrene TEQ	·µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	116

•

HM in water - total		
Our Reference		182702-1
Your Reference	UNITS	Boat Ramp
Date Sampled	1 1 1 1 1	18/12/2017
Type of sample		water
Date prepared	-	04/01/2018
Date analysed	-	05/01/2018
Aluminium-Total	µg/L	760
Cadmium-Total	µg/L	0.4
Copper-Total	µg/L	4
Nickel-Total	µg/L	2
Lead-Total	µg/L	2
Zinc-Total	µg/L	11

Method ID	Methodology Summary
Metals-022	Determination of various metals by ICP-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

1 t .

QUALIT	Y CONTROL	PAHsir	n Water	AN A DESCRIPTION		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			28/12/2017		t e t		1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	28/12/2017	278 g
Date analysed	-			28/12/2017					28/12/2017	
Naphthalene	µg/L	1	Org-012	<1				We have a second se	87	
Acenaphthylene	µg/L	1	Org-012	<1	Y					
Acenaphthene	µg/L	1	Org-012	<1		at Mariana. At Mariana			a y ^{an} a	844
Fluorene	µg/L	1	Org-012	<1					84	
Phenanthrene	µg/L	1	Org-012	<1	1	(p.)			91	
Anthracene	µg/L	1	Org-012	<1						
Fluoranthene	µg/L	1	Org-012	<1		264			83	
Pyrene	µg/L	1	Org-012	<1					101	
Benzo(a)anthracene	µg/L	1	Org-012	<1	1	-				
Chrysene	µg/L	1	Org-012	<1	and a second				94	24
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2		1.4 1.4			Jr™	
Benzo(a)µyrene	µg/L	1	Org-012	<1		1.1			97	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	.5ĝ			1.414	181 D	
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1					Ē	
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1			1.479		, ** : : · · · ·	
Surrogate p-Terphenyl-d14	%		Org-012	86			± 1		100	

.

QUALITY	CONTROL	HM in wa	ter - total	i di selitari		Du	plicate	nie 🖓	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared		- manufacture - ma		04/01/2018	.03			1. A.	04/01/2018	
Date analysed	-			05/01/2018					05/01/2018	
Aluminium-Total	µg/L	10	Metals-022	<10					106	
Cadmium-Total	µg/L	0.1	Metals-022	<0.1			vo, « « « « »		110	
Copper-Total	µg/L	1	Metals-022	<1	<u>(13</u>)				103	
Nickel-Total	µg/L	1	Metals-022	<1	1				99	
Lead-Tolal	µg/L	1	Metals-022	<1					109	
Zinc-Total	µg/L	1	Metals-022	<1		;			104	and the second

Result Definiti	ons		
NT	Not tested		
NA	Test not required		
INS	Insufficient sample for this test		
PQL	Practical Quantitation Limit		
K	Less than		
>	Greater than		
RPD	Relative Percent Difference		
LCS	Laboratory Control Sample		
NS	Not specified		
NEPM	National Environmental Protection Measure		
NR	Not Reported		

Quality Contro	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eascal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Total metals: no preserved sample was received, therefore

analysis was conducted from the unpreserved sample bottle. Note: there is a possibility some elements may be underestimated.

Page 1 of 4

WATERTEST

Office: PO BOX 591 SEVEN HILLS NSW 2147

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8294 Fax: (02) 9838 8919 A.C.N. 098 982 140 A.B.N. 76 098 982 140 NATA No: 1884

ANALYTICAL REPORT for:

BENEDICT INDUSTRIES PTY LTD

PO BOX 10 MOOREBANK NSW 1875

ATTN: FLOYDE GILBERT

JOB	NO:	WC1419

CLIENT ORDER: 15/01/18

DATE RECEIVED: 15/01/18

DATE COMPLETED: 31/01/18

TYPE OF SAMPLES: WATER

NO OF SAMPLES: 1

Junan.... / Issued on/31 01/18 Sue Wyman (Laboratory Supervisor)

/

WATERTEST

Page 2 of 4

ANALYTICAL REPORT

JOB NO: WC1419 CLIENT ORDER: 15/01/18

DATE OF COLLECTION SAMPLES		15/01/18 BOAT RAMP	15/01/18 BLANK	15/01/18 BOAT DUP
Biochemical Oxygen Demand	ma/L	< 2	-2	-2
Chemical Oxygen Demand	mq/L	38	<2	37
Conductivity	uS/cm	52500	1.0	52400
Ammonium Nitrogen	mq/L	<0.1	<0.1	< 0.1
Oxidised Nitrogen NOx-N	mg/L	0.11	<0.1	0.12
Total Kjeldahl Nitrogen	mg/L	1.9	<0.1	2.0
Total Nitrogen	mg/L	2.0	<0.1	2.1
рн	_	7.2	6.9	7.2
Total Phosphorus	mg/L	<0.1	<0.1	<0.1
Suspended Solids	mg/L	3	<2	3
Turbidity	NTU	3.4	<0.2	3.4
Soluble Mercury	mg/L	<0.0001	<0.0001	<0.0001
Total Mercury	mg/L	<0.0001	<0.0001	<0.0001
Dissolved Oxygen	mg/L	8.0	8.1	8.0

LABORATORY DUPLICATE REPORT

JOB NO: WC1419 CLIENT ORDER: 15/01/18

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
BOAT/RAMP	BOD	mq/L	2	<2	<2	0
BOAT/RAMP	COD	mq/L	2	38	37	3
BOAT/RAMP	Conductivity	uS/cm	0.1	52500	52400	0
BOAT/RAMP	Ammonium	mq/L	0.1	<0.1	<0.1	Ő
BOAT/RAMP	Oxidised N	mq/L	0.1	0.11	0.12	8
BOAT/RAMP	TKN	mg/L	0.1	1.9	2.0	5
BOAT/RAMP	Total Nitrogen	mq/L	0.1	2.0	2.1	5
BOAT/RAMP	pH	0	0.1	7.2	7.2	0
BOAT/RAMP	Total Phosphor	mg/L	0.01	<0.1	<0.1	Õ
BOAT/RAMP	Suspended Soli	mg/L	2	3	3	0
BOAT/RAMP	Turbidity	NTU	0.2	3.4	3.4	0
BOAT/RAMP	Soluble Mercur	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Total Mercury	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Dissolved Oxyg	mg/L	0.1	8.0	8.0	0

Acceptance criteria:

RPD <50% for low level (<10xMDL)
RPD <20% for medium level (10-50xMDL)
RPD <10% for high level (>50xMDL)
No limit applies at <2xMDL</pre>

MDL = Method Detection Limit

All results are within the acceptance criteria

WATERTEST

ANALYTICAL REPORT

JOB NO: WC1419 CLIENT ORDER: 15/01/18

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory, in accordance with APHA Standard Methods of Water and Wastewater 22nd Edition, or other approved methods listed below:

5210B	Biochemical Oxygen Demand
5220D	Chemical Oxygen Demand
2510B	Conductivity
4500G	Ammonium Nitrogen
4500F	Oxidised Nitrogen NOx-N
4500BC	Total Kjeldahl Nitrogen
CALC.	Total Nitrogen
4500B	рн
4500BF	Total Phosphorus
2540D	Suspended Solids
2130B	Turbidity
3112B	Soluble Mercury
3112B	Total Mercury
5210B	Dissolved Oxygen
פדייד. האזה	7 DODINICON DDIITH DONIE DAME

SITE: DAVY ROBINSON DRIVE BOAT RAMP AREA SAMPLER: DAN ANDREWS TIME: 11:30am

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 183291

Client Watertest Pty Ltd Attention Results Email Address Unit 1/4 Abbott Rd, Seven Hills, NSW, 2147	Client Details	
Attention Results Email Address Unit 1/4 Abbott Rd, Seven Hills, NSW, 2147	Client	Watertest Pty Ltd
Address Unit 1/4 Abbott Rd, Seven Hills, NSW, 2147	Attention	Results Email
	Address	Unit 1/4 Abbott Rd, Seven Hills, NSW, 2147

Sample Details	
Your Reference	<u>WC1419</u>
Number of Samples	1 water
Date samples received	15/01/2018
Date completed instructions received	15/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	22/01/2018	
Date of Issue	22/01/2018	
NATA Accreditation Number 2901. This	document shal	I not be reproduced except in full.
Accredited for compliance with ISO/IEC	17025 - Testin	g. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Jaimie Loa-Kum-Cheung, Senior Chemist Steven Luong, Senior Chemist

Authorised By

tjes

David Springer, General Manager

Envirolab Reference: 183291 Revision No: R00

Page | 1 of 9

PAHs in Water		
Our Reference		183291-1
Your Reference	UNITS	Boat Ramp
Type of sample		water
Date extracted	-	16/01/2018
Date analysed		16/01/2018
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	65

HM in water - dissolved Our Refarence		183291-1
Your Reference	UNITS	Boat Ramp
Type of sample		water
Date prepared	-	16/01/2018
Date analysed	-	16/01/2018
Aluminium-Dissolved	µg/L	<10
Cadmium-Dissolved	µg/L	0.1
Copper-Dissolved	µg/L	1
Nickel-Dissolved	µg/L	<1
Lead-Dissolved	µg/L	<1
Zinc-Dissolved	µg/L	4

Method ID	Methodology Summary
Metals-022	Determination of various metals by ICP-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALIT	Y CONTROL	: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			16/01/2018				10	16/01/2018	, Pr
Date analysed	-			16/01/2018					16/01/2018	
Naphthalene	µg/L	1	Org-012	<1	. 41				128	
Acenaphthylene	µg/L	1	Org-012	<1					- 1 ⁻	
Acenaphthene	µg/L	1	Org-012	<1	139	, gan			194 E	
Fluorene	µg/L	1	Org-012	<1					129	
Phenanthrene	µg/L	1	Org-012	<1	- 11		1 I I I I I I I I I I I I I I I I I I I		127	
Anthracene	µg/L	1	Org-012	<1						
Fluoranthene	µg/L	1	Org-012	<1		giel g			120	
Pyrene	µg/L	1	Org-012	<1				and the second	130	An Town where the case
Benzo(a)anthracene	hð\r	1	Org-012	<1					1994) 1997 - 1997	
Chrysene	µg/L	1	Org-012	<1				andread and sector as	113	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2		<i>出作</i>				
Benzo(a)pyrene	µg/L	1	Org-012	<1					121	
Indeno(1,∠,3-c,d)pyrene	µg/L	1	Org-012	<1	93)	(64) (64)				
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1		an Najiri seta Najiri	No. of Marco	and the second se		
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1						
Surrogate p-Terphenyl-d14	%		Org-012	83					122	e contractor de la cont

•

QUALITY CO	ONTROL: HIN	A in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			16/01/2018	. 83				16/01/2018	
Date analysed	-			16/01/2018	÷				16/01/2018	
Aluminium-Dissolved	µg/L	10	Metals-022	<10		$D_{V,1}$			104	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1				A MANAGER OF CONTRACTOR	105	· .
Copper-Dissolved	µg/L	1	Metals-022	<1	, (1				95	
Nickel-Dissolved	µg/L	1	Metals-022	<1				10 1 10 10 10 10 10 10 10 10 10 10 10 10	97	
Lead-Dissolved	µg/L	1	Metals-022	<1	-83		y te		102	
Zinc-Dissolved	µg/L	1	Metals-022	<1					95	

NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking \ 1cfu/100mL. The red 2011.	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than commended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45 μ m filter at the lab. Note: there is a possibility some elements may be underestimated.

Page 1 of 4

WATERTEST

Office: PO BOX 591 SEVEN HILLS NSW 2147

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8294 (02) 9838 8919 Fax: 098 982 140 A.C.N. 76 098 982 140 A.B.N. NATA No: 1884

ANALYTICAL REPORT for:

BENEDICT INDUSTRIES PTY LTD

PO BOX 10 MOOREBANK NSW 1875

ATTN: FLOYDE GILBERT

JOB NO:	WD0073
CLIENT ORDER:	BI 22318
DATE RECEIVED:	15/02/18
DATE COMPLETED:	28/02/18

TYPE OF SAMPLES: WATER

NO OF SAMPLES: 1

. Issued on/ /18 Sue Wyman (Laboratory Supervisor)

WATERTEST

Page 2 of 4

ANALYTICAL REPORT

JOB NO: WD0073 CLIENT ORDER: BI 22318

DATE OF COLLECTION SAMPLES		15/02/18 BOAT RAMP	15/02/18 BLANK	15/02/18 BOAT DUP
Biochemical Oxygen Demand	mg/L	<2	<2	<2
Chemical Oxygen Demand	mg/L	49	<2	48
Conductivity	uS/cm	48900	1.2	49000
Ammonium Nitrogen	mg/L	<0.1	<0.1	<0.1
Oxidised Nitrogen NOx-N	mg/L	<0.1	<0.1	<0.1
Total Kjeldahl Nitrogen	mg/L	0.6	<0.1	0.5
Total Nitrogen	mg/L	0.6	<0.1	0.5
рн		6.6	7.0	6.6
Total Phosphorus	mg/L	0.06	<0.01	0.09
Suspended Solids	mg/L	4	<2	4
Turbidity	NTU	3.6	<0.2	3.6
Soluble Mercury	mg/L	<0.0001	<0.0001	<0.0001
Total Mercury	mg/L	<0.0001	<0.0001	<0.0001
Dissolved Oxygen	mg/L	8.2	7.8	8.2

Page 3 of 4

LABORATORY DUPLICATE REPORT

JOB NO: WD0073 CLIENT ORDER: BI 22318

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
BOAT/RAMP	BOD	mg/L	2	<2	<2	0
BOAT/RAMP	COD	mg/L	2	49	48	2
BOAT/RAMP	Conductivity	uS/cm	0.1	48900	49000	0
BOAT/RAMP	Ammonium	mg/L	0.1	<0.1	<0.1	0
BOAT/RAMP	Oxidised N	mg/L	0.1	<0.1	<0.1	0
BOAT/RAMP	TKN	mg/L	0.1	0.6	0.5	17
BOAT/RAMP	Total Nitrogen	mg/L	0.1	0.6	0.5	17
BOAT/RAMP	рн		0.1	6.6	6.6	0
BOAT/RAMP	Total Phosphor	mg/L	0.01	0.06	0.09	38
BOAT/RAMP	Suspended Soli	mg/L	2	4	4	0
BOAT/RAMP	Turbidity	NTU	0.2	3.6	3.6	0
BOAT/RAMP	Soluble Mercur	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Total Mercury	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Dissolved Oxyg	mg/L	0.1	8.2	8.2	0

Acceptance criteria:

RPD <50% for low level (<10xMDL)
RPD <20% for medium level (10-50xMDL)
RPD <10% for high level (>50xMDL)
No limit applies at <2xMDL</pre>

MDL = Method Detection Limit

All results are within the acceptance criteria

ANALYTICAL REPORT

JOB NO: WD0073 CLIENT ORDER: BI 22318

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory, in accordance with APHA Standard Methods of Water and Wastewater 22nd Edition, or other approved methods listed below:

5210B Biochemical Oxygen Demand 5220D Chemical Oxygen Demand 2510B Conductivity 4500G Ammonium Nitrogen 4500F Oxidised Nitrogen NOx-N 4500BC Total Kjeldahl Nitrogen CALC. Total Nitrogen 4500B pн Total Phosphorus 4500BF 2540D Suspended Solids 2130B Turbidity 3112B Soluble Mercury 3112B Total Mercury 5210B Dissolved Oxygen

SITE: DAVY ROBINSON DRIVE BOAT RAMP AREA SAMPLER: DAN ANDREWS TIME: 10.30am

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 185383

Client Details			
Client	Watertest Pty Ltd		ŝ
Attention	Results Email		
Address	Unit 1/4 Abbott Rd, Seven Hills,	NSW, 2147	ן ייידי איז איז איז איז איז איז איז איז איז איז

Sample Details		
Your Reference	WD0073	
Number of Samples	1 Water	
Date samples received	16/01/2018	
Date completed instructions received	16/01/2018	

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	23/02/2018	
Date of Issue	21/02/2018	
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.	
Accredited for compliance with IS	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with	1 * - 11 - 14 - 14 - 14 - 14 - 14 - 14 - 1

Results Approved By Jaimie Loa-Kum-Cheung, Senior Chemist Steven Luong, Senior Chemist

Authorised By

کھ

David Springer, General Manager

Envirolab Reference: 185383 Revision No: R00

PAHs in Water		
Our Reference		185383-1
Your Reference	UNITS	Boat Ramp
Type of sample		Water
Date extracted	-	19/02/2018
Date analysed	÷	19/02/2018
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	μg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	97

HM in water - dissolved Our Reference		185383-1
Your Reference	UNITS	Boat Ramp
Type of sample		Water
Date prepared	-	19/02/2018
Date analysed	-	19/02/2018
Aluminium-Dissolved	µg/L	<10
Cadmium-Dissolved	µg/L	0.2
Copper-Dissolved	µg/L	2
Nickel-Dissolved	µg/L	1
Lead-Dissolved	µg/L	<1
Zinc-Dissolved	µg/L	8

Method ID	Methodology Summary	Contract of
Metals-022	Determination of various metals by ICP-MS.	A DOMESTIC AND ADDRESS OF ADDRESS ADDR
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.	A POINT OF A DATE OF A DATE OF A DATE

QUALIT	CONTROL	: PAHs in	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			19/02/2018		- 1991 - F			19/02/2018	
Date analysed	-			19/02/2018					19/02/2018	
Naphthalene	μg/L	1	Org-012	<1					81	
Acenaphthylene	μg/L	1	Org-012	<1						
Acenaphthene	µg/L	1	Org-012	<1		n 1949	a a			
Fluorene	µg/L	1	Org-012	<1					78	
Phenanthrene	µg/L	1	Org-012	<1		p de		e at c	85	
Anthracene	µg/L	1	Org-012	<1						
Fluoranthene	µg/L	1	Org-012	<1					79	
Pyrene	µg/L	1	Org-012	<1					82	
Benzo(a)anthracene	µg/L	1	Org-012	<1						
Chrysene	µg/L	1	Org-012	<1					89	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2						
Benzo(a)pyrene	µg/L	1	Org-012	<1					110	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	151	(AT)			19 T	
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1						
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1	r. ())		41		12.4 1 1	
Surrogate p-Terphenyl-d14	%		Org-012	109					106	

QUALITY CC	INTROL: HIM	l in water	- dissolved				Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#		Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			19/02/2018		ng Ag te z				19/02/2018	
Date analysed	-			19/02/2018						19/02/2018	
Aluminium-Dissolved	µg/L	10	Metals-022	<10			2471			113	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1						102	
Copper-Dissolved	µg/L	1	Metals-022	<1						106	
Nickel-Dissolved	µg/L	1	Metals-022	<1		n ta National National				97	944-01-01-01-01-01-01-01-01-01-01-01-01-01-
Lead-Dissolved	μg/L	1	Metals-022	<1			194 - g			105	
Zinc-Dissolved	µg/L	1	Metals-022	<1			÷			99	11.11.11.11.11.11.11.11.11.11.11.11.11.

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported
The State of the State	
Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike

Matrix Spikeis to monitor the performance of the analytical method used and to determine whether matrix interferences
exist.LCS (LaboratoryThis comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified

 Control Sample)
 with analytes representative of the analyte class. It is simply a check sample.

 Surrogate Spike
 Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

eport Comments	
vissolved Metals: no preserved sample was received, therefore	
he unpreserved sample was filtered through 0.45 μm filter at the lab.	
Note: there is a possibility some elements may be underestimated.	

.
Page 1 of 4

WATERTEST

Office: PO BOX 591 SEVEN HILLS NSW 2147

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8294 Fax: (02) 9838 8919 A.C.N. 098 982 140 A.B.N. 76 098 982 140 NATA No: 1884

ANALYTICAL REPORT for:

BENEDICT INDUSTRIES PTY LTD

PO BOX 10 MOOREBANK NSW 1875

ATTN: FLOYDE GILBERT

JOB	NO:	WD0184

CLIENT ORDER: 12/03/18

DATE RECEIVED: 12/03/18

DATE COMPLETED: 23/03/18

TYPE OF SAMPLES: WATER

NO OF SAMPLES: 1

. Issued on (2 03/18

Sue Wyman (Laboratory Supervisor)

Page 2 of 4

.

ANALYTICAL REPORT

JOB NO: WD0184 CLIENT ORDER: 12/03/18

DATE OF COLLECTION SAMPLES		15/02/18 BOAT RAMP	15/02/18 BLANK	15/02/18 BOAT DUP
Biochemical Oxygen Demand	mq/L	<2	<2	<2
Chemical Oxygen Demand	mq/L	<2	<2	<2
Conductivity	uS/cm	25000	1.2	25000
Ammonium Nitrogen	mg/L	<0.1	<0.1	<0.1
Oxidised Nitrogen NOx-N	mg/L	0.19	<0.1	0.19
Total Kjeldahl Nitrogen	mg/L	1.0	<0.1	1.0
Total Nitrogen	mg/L	1.2	<0.1	1.2
рн		7.0	6.9	7.0
Total Phosphorus	mg/L	<0.1	<0.1	<0.1
Suspended Solids	mg/L	6	<2	6
Turbidity	NTU	3.7	<0.2	3.7
Soluble Mercury	mg/L	<0.0001	<0.0001	<0.0001
Total Mercury	mg/L	<0.0001	<0.0001	<0.0001
Dissolved Oxygen	mg/L	8.9	7.8	8.9

LABORATORY DUPLICATE REPORT

JOB NO: WD0184 CLIENT ORDER: 12/03/18

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
BOAT/RAMP	BOD	mg/L	2	<2	<2	0
BOAT/RAMP	COD	mg/L	2	<2	<2	0
BOAT/RAMP	Conductivity	uS/cm	0.1	25000	25000	0
BOAT/RAMP	Ammonium	mg/L	0.1	<0.1	<0.1	0
BOAT/RAMP	Oxidised N	mg/L	0.1	0.19	0.19	0
BOAT/RAMP	TKN	mg/L	0.1	1.0	1.0	0
BOAT/RAMP	Total Nitrogen	mg/L	0.1	1.2	1.2	0
BOAT/RAMP	pH	-	0.1	7.0	7.0	0
BOAT/RAMP	Total Phosphor	mg/L	0.01	<0.1	<0.1	0
BOAT/RAMP	Suspended Soli	mg/L	2	6	6	0
BOAT/RAMP	Turbidity	NTU	0.2	3.7	3.7	0
BOAT/RAMP	Soluble Mercur	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Total Mercury	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Dissolved Oxyg	mg/L	0.1	8.9	8.9	0

Acceptance criteria:

RPD <50% for low level (<10xMDL) RPD <20% for medium level (10-50xMDL) RPD <10% for high level (>50xMDL) No limit applies at <2xMDL

MDL = Method Detection Limit

All results are within the acceptance criteria

ANALYTICAL REPORT

JOB NO: WD0184 CLIENT ORDER: 12/03/18

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory, in accordance with APHA Standard Methods of Water and Wastewater 22nd Edition, or other approved methods listed below:

- 5210B Biochemical Oxygen Demand 5220D Chemical Oxygen Demand
- 2510B Conductivity
- 4500G Ammonium Nitrogen
- 4500F Oxidised Nitrogen NOx-N
- 4500BC Total Kjeldahl Nitrogen
- CALC. Total Nitrogen

4500B pH

- 4500BF Total Phosphorus
- 2540D Suspended Solids
- 2130B Turbidity
- 3112B Soluble Mercury
- 3112B Total Mercury
- 5210B Dissolved Oxygen

SITE: DAVY ROBINSON DRIVE BOAT RAMP AREA SAMPLER: DAN ANDREWS TIME: 12.50pm;WATER TEMP:24oC;WEATHER:PARTLY CLOUDY TEMP=26oC.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 187422

Client Details	
Client	Watertest Pty Ltd
Attention	Results Email
Address	Unit 1/4 Abbott Rd, Seven Hills, NSW, 2147

Sample Details	
Your Reference	WD0184
Number of Samples	1 Water
Date samples received	16/03/2018
Date completed instructions received	16/03/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details Date results requested by 23/03/2018 Date of Issue 22/03/2018 NATA Accreditation Number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Jaimie Loa-Kum-Cheung, Senior Chemist Jeremy Faircloth, Organics Supervisor

Authorised By

كعد

David Springer, General Manager

Envirolab Reference: 187422 Revision No: R00

Page | 1 of 9

PAHs in Water		
Our Reference		187422-1
Your Reference	UNITS	Boat Ramp
Date Sampled		12/03/2018
Type of sample		Water
Date extracted	-	19/03/2018
Date analysed	*	19/03/2018
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	μg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	107

HM in water - dissolved		
Our Reference		187422-1
Your Reference	UNITS	Boat Ramp
Date Sampled		12/03/2018
Type of sample		Water
Date prepared	-	20/03/2018
Date analysed	-	20/03/2018
Aluminium-Dissolved	µg/L	<10
Cadmium-Dissolved	µg/L	0.2
Copper-Dissolved	µg/L	1
Nickel-Dissolved	µg/L	2
Lead-Dissolved	µg/L	<1
Zinc-Dissolved	µg/L	7

Method ID	Methodology Summary	
Metals-022	Determination of various metals by ICP-MS.	
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.	an an anna ann an an an an

QUALIT	Y CONTROL	PAHs in	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			19/03/2018		- 1991 H			19/03/2018	1. T.
Date analysed	-			19/03/2018					19/03/2018	
Naphthalene	µg/L	1	Org-012	<1					78	
Acenaphthylene	µg/L	1	Org-012	<1	and a state of the state			and a second		
Acenaphthene	µg/L	1	Org-012	<1		1 A. M.				
Fluorene	μg/L	1	Org-012	<1	the second s				87	
Phenanthrene	µg/L	1	Org-012	<1		(3.1			88	· .
Anthracene	µg/L	1	Org-012	<1						-
Fluoranthene	µg/L	1	Org-012	<1		5			86	
Pyrene	μg/L	1	Org-012	<1					89	
Benzo(a)anthracene	µg/L	1	Org-012	<1					-	
Chrysene	µg/L	1	Org-012	<1					90	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2	1. J. 1					1.13
Benzo(a)pyrene	µg/L	1	Org-012	<1		· ·			103	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1						
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	:					
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1						
Surrogate p-Terphenyl-d14	%		Org-012	123					117	

QUALITY CO	ONTROL: HM	l in water	- dissolved			Duj	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			20/03/2018		and a state of the		a construction of the second s	20/03/2018	
Date analysed	-			20/03/2018					20/03/2018	
Aluminium-Dissolved	µg/L	10	Metals-022	<10					97	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1		1			91	
Copper-Dissolved	µg/L	1	Metals-022	<1		11. TV			87	. "1
Nickel-Dissolved	µg/L	1	Metals-022	<1					88	
Lead-Dissolved	µg/L	1	Metals-022	<1					90	
Zinc-Dissolved	μg/L	1	Metals-022	<1	-				91	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR .	
Cuality Contro	Di Definitions
Blank	glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

SAMPLE REPORT	Report Comments
	Dissolved Metals: no preserved sample was received, therefore
	the unpreserved sample was filtered through 0.45 μm filter at the lab.
1	Note: there is a possibility some elements may be underestimated.

ŧ

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Office: PO BOX 591 SEVEN HILLS NSW 2147

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8294 Fax: (02) 9838 8919 A.C.N. 098 982 140 A.B.N. 76 098 982 140 NATA No: 1884

ANALYTICAL REPORT for:

BENEDICT INDUSTRIES PTY LTD

PO BOX 10 MOOREBANK NSW 1875

ATTN: FLOYDE GILBERT

JOB	NO:	WD0326A

CLIENT ORDER: 13/04/18

DATE RECEIVED: 13/04/18

DATE COMPLETED: 30/04/18

TYPE OF SAMPLES: WATER

NO OF SAMPLES: 1

Nymon Issued on /30/04/18 Sue Wyman (Laboratory Supervisor)

Page 2 of 4

.

ANALYTICAL REPORT

JOB NO: WD0326A CLIENT ORDER: 13/04/18

DATE OF COLLECTION SAMPLES		13/04/18 BOAT RAMP	13/04/18 BLANK	13/04/18 BOAT DUP
Ricchomical Owners Domand		.0	0	0
Brochemical Oxygen Demand	шд/ц	<2	<2	<2
Chemical Oxygen Demand	mg/L	76	<2	76
Conductivity	uS/cm	47100	<1	47200
Ammonium Nitrogen	mg/L	<0.1	<0.1	<0.1
Oxidised Nitrogen NOx-N	mg/L	<0.1	<0.1	<0.1
Total Kjeldahl Nitrogen	mg/L	0.8	<0.1	0.7
Total Nitrogen	mg/L	0.8	<0.1	0.7
рн		6.7	7.0	6.7
Total Phosphorus	mg/L	0.12	<0.1	0.12
Suspended Solids	mg/L	6	<2	6
Turbidity	NTU	4.4	<0.2	4.4
Soluble Mercury	mg/L	<0.0001	<0.0001	<0.0001
Total Mercury	mg/L	<0.0001	<0.0001	<0.0001
Dissolved Oxygen	mg/L	8.2	7.6	8.2

Page 3 of 4

LABORATORY DUPLICATE REPORT

JOB NO: WD0326A CLIENT ORDER: 13/04/18

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
BOAT/RAMP	BOD	mg/L	2	<2	<2	0
BOAT/RAMP	COD	mg/L	2	76	76	0
BOAT/RAMP	Conductivity	uŠ/cm	0.1	47100	47200	0
BOAT/RAMP	Ammonium	mg/L	0.1	<0.1	<0.1	0
BOAT/RAMP	Oxidised N	mg/L	0.1	<0.1	<0.1	0
BOAT/RAMP	TKN	mg/L	0.1	0.8	0.7	13
BOAT/RAMP	Total Nitrogen	mg/L	0.1	0.8	0.7	13
BOAT/RAMP	рн	-	0.1	6.7	6.7	0
BOAT/RAMP	Total Phosphor	mg/L	0.01	0.12	0.12	0
BOAT/RAMP	Suspended Soli	mg/L	2	6	6	0
BOAT/RAMP	Turbidity	NTU	0.2	4.4	4.4	0
BOAT/RAMP	Soluble Mercur	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Total Mercury	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Dissolved Oxyg	mg/L	0.1	8.2	8.2	0

Acceptance criteria:

RPD <50% for low level (<10xMDL)
RPD <20% for medium level (10-50xMDL)
RPD <10% for high level (>50xMDL)
No limit applies at <2xMDL</pre>

MDL = Method Detection Limit

All results are within the acceptance criteria

ANALYTICAL REPORT

JOB NO: WD0326A CLIENT ORDER: 13/04/18

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory, in accordance with APHA Standard Methods of Water and Wastewater 22nd Edition, or other approved methods listed below:

5210B 5220D 2510B	Biochemical Oxygen Demand Chemical Oxygen Demand Conductivity
4500G	Ammonium Nitrogen
4500F	Oxidised Nitrogen NOx-N
4500BC	Total Kjeldahl Nitrogen
CALC.	Total Nitrogen
4500B	рн
4500BF	Total Phosphorus
2540D	Suspended Solids
2130B	Turbidity
3112B	Soluble Mercury
3112B	Total Mercury
5210B	Dissolved Oxygen
SITE: DAVY	ROBINSON DRIVE BOAT RAMP AREA
SAMPLER: I	AN ANDREWS

TIME: 8.15am; WATER TEMP:24oC; WEATHER: CLEAR, TEMP=17oC.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 189524

Client Details			
Client	Watertest Pty Ltd		
Attention	Sue Wyman		
Address	Unit 1/4 Abbott Rd, Seven Hill	s, NSW, 2147	
A CONTRACTOR OF CONTRACTOR AND CONTRACTOR OF CONT			and a feature construction of the state of the second second second second second second second second second s

Sample Details	
Your Reference	WD 0326
Number of Samples	1 Water
Date samples received	16/04/2018
Date completed instructions received	16/04/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	23/04/2018	
Date of Issue	19/04/2018	
NATA Accreditation Number 2901.	This document shall not be	reproduced except in full.
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests	not covered by NATA are denoted with *

Results Approved By Jaimie Loa-Kum-Cheung, Senior Chemist Jeremy Faircloth, Organics Supervisor Authorised By

Jacinta Hurst, Laboratory Manager

Envirolab Reference: 189524 Revision No: R00

Page | 1 of 9

PAHs in Water		
Our Reference		189524-1
Your Reference	UNITS	Boat Ramp
Date Sampled		13/04/2018
Type of sample		Water
Date extracted		17/04/2018
Date analysed	-	17/04/2018
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	μg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	μg/L	<1
Fluoranthene	µg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	83

HM in water - dissolved		
Our Reference		189524-1
Your Reference	UNITS	Boat Ramp
Date Sampled		13/04/2018
Type of sample		Water
Date prepared	-	17/04/2018
Date analysed	-	17/04/2018
Aluminium-Dissolved	µg/L	20
Cadmium-Dissolved	µg/L	0.4
Copper-Dissolved	µg/L	2
Nickel-Dissolved	µg/L	1
Lead-Dissolved	µg/L	<1
Zinc-Dissolved	µg/L	6

Method ID	Methodology Summary	
Metals-022	Determination of various metals by ICP-MS.	- 14,000
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.	A TO A DESCRIPTION OF A

QUALIT	CONTROL	PAHs in	i Water			Duj	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			17/04/2018	1	17/04/2018	17/04/2018	a No england	17/04/2018	14. E
Date analysed	-			17/04/2018	1	17/04/2018	17/04/2018	and the second second	17/04/2018	
Naphthalene	µg/L	1	Org-012	<1	1	<1	<1	0	76	
Acenaphthylene	µg/L	1	Org-012	<1	1	<1	<1	0		
Acenaphthene	µg/L	1	Org-012	<1	1	<1	<1	0	-	1.7
Fluorene	µg/L	1	Org-012	<1	1	°, ^{°°} <1	<1	0	87	
Phenanthrene	µg/L	1	Org-012	<1	1	<1	<1	0	94	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Anthracene	µg/L	1	Org-012	<1	1	<1	<1	0		
Fluoranthene	µg/L	1	Org-012	<1	1	<1	<1	0	88	
Pyrene	µg/L	1	Org-012	<1	1	<1	<1	0	85	
Benzo(a)anthracene	µg/L	1	Org-012	<1	1	<1	<1	0		
Chrysene	µg/L	1	Org-012	<1	1	<1	<1	0	76	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2	1	<2	<2	0		
Benzo(a)pyrene	µg/L	1	Org-012	<1	1	<1	<1	0	93	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	1	<1	<1	0		
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	1	<1	<1	0	gen sala managemente	
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1	1	<1	<1	0		
Surrogate p-Terphenyl-d14	%		Org-012	109	1	83	99	18	104	

QUALITY CO	ONTROL: HIM	l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			17/04/2018		redek. L			17/04/2018	
Date analysed	-			17/04/2018					17/04/2018	
Aluminium-Dissolved	μg/L	10	Metals-022	<10					91	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1					102	
Copper-Dissolved	µg/L	1	Metals-022	<1		11 A.			101	
Nickel-Dissolved	µg/L	1	Metals-022	<1					99	
Lead-Dissolved	µg/L	1	Metals-022	<1		t A	1	· .	100	
Zinc-Dissolved	µg/L	1	Metals-022	<1					102	

~

Result Definiti	ons	
NT	Not tested	
NA	Test not required	
INS	Insufficient sample for this test	
PQL	Practical Quantitation Limit	
<	Less than	
>	Greater than	
RPD	Relative Percent Difference	
LCS	Laboratory Control Sample	
NS	Not specified	
NEPM	National Environmental Protection Measure	
NR	Not Reported	
Quality Contro	Definitions	
Blank	glassware etc, can be determined by processi samples.	which is not derived from the sample but from reagents, ing solvents and reagents in exactly the same manner as for
Duplicate	This is the complete duplicate analysis of a sa should be one where the analyte concentratio	ample from the process batch. If possible, the sample selected on is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known is to monitor the performance of the analytical exist.	n concentration of target analyte. The purpose of the matrix spike I method used and to determine whether matrix interferences
100 /l all and and	The factor is a second state of the second sta	- 24,2008/4-18

LCS (Laboratory This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified **Control Sample**) with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments	
Dissolved Metals: no preserved sample was received, ther	efore
the unpreserved sample was filtered through 0.45 µm filte	r at the lab.
Note: there is a possibility some elements may be underest	stimated.

Office: PO BOX 591 SEVEN HILLS NSW 2147

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8294 Fax: (02) 9838 8919 A.C.N. 098 982 140 A.B.N. 76 098 982 140 NATA No: 1884

ANALYTICAL REPORT for:

BENEDICT INDUSTRIES PTY LTD

PO BOX 10 MOOREBANK NSW 1875

ATTN: FLOYDE GILBERT

JOB	NO:	WD0478A

CLIENT ORDER: 18/05/18

DATE RECEIVED: 18/05/18

DATE COMPLETED: 31/05/18

TYPE OF SAMPLES: WATER

NO OF SAMPLES: 3

an Issued on 0,5/18 Sue Wyman (Laboratory Supervisor)

Page 1 of 4

Page 2 of 4

ANALYTICAL REPORT

JOB NO: WD0478A CLIENT ORDER: 18/05/18

DATE OF COLLECTION SAMPLES		18/05/18 BOAT RAMP	18/05/18 BLANK	18/05/18 BOAT DUP
Biochemical Oxygen Demand	mg/L	<2	<2	<2
Chemical Oxygen Demand	mg/L	20	<2	20
Conductivity	uS/cm	40800	<1	40900
Ammonium Nitrogen	mg/L	<0.1	<0.1	<0.1
Oxidised Nitrogen NOx-N	mg/L	0.13	<0.1	0.13
Total Kjeldahl Nitrogen	mg/L	1.0	<0.1	1.0
Total Nitrogen	mg/L	1.1	<0.1	1.1
PH		7.5	7.0	7.5
Total Phosphorus	mg/L	<0.1	<0.1	<0.1
Suspended Solids	mg/L	7	<2	7
Turbidity	NTU	4.0	<0.2	4.0
Soluble Mercury	mg/L	<0.0001	<0.0001	<0.0001
Total Mercury	mg/L	<0.0001	<0.0001	<0.0001
Dissolved Oxygen	mg/L	9.2	7.0	9.2

LABORATORY DUPLICATE REPORT

JOB NO: WD0478A CLIENT ORDER: 18/05/18

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
BOAT/RAMP	BOD	mg/L	2	<2	<2	0
BOAT/RAMP	COD	mg/L	2	20	20	Ō
BOAT/RAMP	Conductivity	uS/cm	0.1	40800	40900	Ō
BOAT/RAMP	Ammonium	mg/L	0.1	<0.1	<0.1	Ō
BOAT/RAMP	Oxidised N	mg/L	0.1	0.13	0.13	0
BOAT/RAMP	TKN	mg/L	0.1	1.0	1.0	0
BOAT/RAMP	Total Nitrogen	mg/L	0.1	1.1	1.1	0
BOAT/RAMP	рн	0	0.1	7.5	7.5	0
BOAT/RAMP	Total Phosphor	mg/L	0.01	<0.1	<0.1	0
BOAT/RAMP	Suspended Soli	mg/L	2	7	7	0
BOAT/RAMP	Turbidity	NTU	0.2	4.0	4.0	0
BOAT/RAMP	Soluble Mercur	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Total Mercury	mg/L	0.0001	<0.0001	<0.0001	0
BOAT/RAMP	Dissolved Oxyg	mg/L	0.1	9.2	9.2	0

Acceptance criteria:

RPD <50% for low level (<10xMDL)
RPD <20% for medium level (10-50xMDL)
RPD <10% for high level (>50xMDL)
No limit applies at <2xMDL</pre>

MDL = Method Detection Limit

All results are within the acceptance criteria

ANALYTICAL REPORT

JOB NO: WD0478A CLIENT ORDER: 18/05/18

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory, in accordance with APHA Standard Methods of Water and Wastewater 22nd Edition, or other approved methods listed below:

- 5210B Biochemical Oxygen Demand
- 5220D Chemical Oxygen Demand
- 2510B Conductivity
- Ammonium Nitrogen 4500G

Oxidised Nitrogen NOx-N 4500F

- 4500BC Total Kjeldahl Nitrogen
- CALC. Total Nitrogen

4500B рн

- 4500BF Total Phosphorus
- 2540D Suspended Solids
- 2130B Turbidity 3112B
- Soluble Mercury 3112B
- Total Mercury
- Dissolved Oxygen 5210B

SITE: DAVY ROBINSON DRIVE BOAT RAMP AREA SAMPLER: DAN ANDREWS TIME: 12.37pm; WATER TEMP:210C; WEATHER: CLEAR, TEMP=190C.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 192546

Client Details			
Client	Watertest Pty Ltd		
Attention	Results Email		
Address	Unit 1/4 Abbott Rd, Seven Hills,	NSW, 2147	

Sample Details	
Your Reference	<u>WD 0478 A</u>
Number of Samples	1 Water
Date samples received	25/05/2018
Date completed instructions received	25/05/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by01/06/2018Date of Issue30/05/2018

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Jaimie Loa-Kum-Cheung, Senior Chemist Steven Luong, Senior Chemist Authorised By

Jacinta Hurst, Laboratory Manager

Envirolab Reference: 192546 Revision No: R00

Page | 1 of 9

PAHs in Water		
Our Reference		192546-1
Your Reference	UNITS	Boat Ramp
Date Sampled		18/05/2018
Type of sample		Water
Date extracted	-	28/05/2018
Date analysed	-	28/05/2018
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	μg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	131

HM in water - dissolved		
Our Reference		192546-1
Your Reference	UNITS	Boat Ramp
Date Sampled		18/05/2018
Type of sample		Water
Date prepared	-	28/05/2018
Date analysed	-	28/05/2018
Aluminium-Dissolved	μg/L	<10
Cadmium-Dissolved	µg/L	<0.1
Copper-Dissolved	µg/L	2
Nickel-Dissolved	μg/L	1
Lead-Dissolved	µg/L	<1
Zinc-Dissolved	μg/L	6

Method ID	Methodology Summary	
Metals-022	Determination of various metals by ICP-MS.	
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.	والمعارية المستحد والمحالية المحالية والمحالية

QUALIT	Y CONTROL	: PAHs in	n Water			Đu	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			28/05/2018	- 1				28/05/2018	
Date analysed	-			28/05/2018					28/05/2018	
Naphthaiene	µg/L	1	Org-012	<1					102	
Acenaphthylene	µg/L	1	Org-012	<1					and the complete second	
Acenaphthene	µg/L	1	Org-012	<1					a regime to a second a	
Fluorene	µg/L	1	Org-012	<1				1990 Page 1	116	
Phenanthrene	µg/L	1	Org-012	<1				100mm/d 1941 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	115	
Anthracene	µg/L	1	Org-012	<1			and a set of the set o	n od 12 kranova		
Fluoranthene	µg/L	1	Org-012	<1				and the second se	125	
Pyrene	µg/L	1	Org-012	<1				landa uku yena vilina	124	
Benzo(a)anthracene	µg/L	1	Org-012	<1		1991 - 1991 - 1993 - 19				
Chrysene	µg/L	1	Org-012	<1		их от на			122	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2				a na manana mangana man		
Benzo(a)pyrene	µg/L	1	Org-012	<1	1			and and a second second	128	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	1. () ()					1
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	-			NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO	nan e bilanda medale eta	
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1		1. M				27 - 11 - 1
Surrogate p-Terphenyl-d14	%		Org-012	115	Territory of the York	- And		and a lot of the second second	98	

QUALITY CC	NTROL: HM	l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			28/05/2018		(1394) - T		a particular	28/05/2018	
Date analysed	-			28/05/2018				a la companya da la c	28/05/2018	
Aluminium-Dissolved	µg/L	10	Metals-022	<10				and A re-	106	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1					107	
Copper-Dissolved	µg/L	1	Metals-022	<1		1 - 22 1			100	
Nickel-Dissolved	µg/L	1	Metals-022	<1		¹		anaonaa oo vu-sloo	101	
Lead-Dissolved	µg/L	1	Metals-022	<1		1. j.			104	1.
Zinc-Dissolved	µg/L	1	Metals-022	<1		and a first state of the second s			101	
Result Definiti	ons									
------------------------	---	--								
NT	Not tested									
NA	Test not required									
INS	Insufficient sample for this test									
PQL	Practical Quantitation Limit	신 말 문제로 가 같은 것 같은 것 같아. 것 같아.								
<	Less than									
>	Greater than									
RPD	Relative Percent Difference									
LCS	Laboratory Control Sample	이 이번 📲 영향이 같이 있는 것을 알고 있었다.								
NS	Not specified									
NEPM	National Environmental Protection Measure									
NR	Not Reported	14.91								
		na mar de la ferra de la seconda de la construcción de la compara de la construction de la seconda de la constr Le construcción de la seconda de la construcción de la construcción de la seconda de la seconda de la construcción de								

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking V 1cfu/100mL. The red 2011.	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than commended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC

Client Reference: WD 0478 A

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Client Reference: WD 0478 A

Report Comments
Dissolved Metals: no preserved sample was received, therefore
the unpreserved sample was filtered through 0.45 μm filter at the lab.
Note: there is a possibility some elements may be underestimated.